![6.2立方根课时达标练 人教版数学七年级下册第1页](http://img-preview.51jiaoxi.com/2/3/15741675/0-1715863427581/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![6.2立方根课时达标练 人教版数学七年级下册第2页](http://img-preview.51jiaoxi.com/2/3/15741675/0-1715863427679/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![6.2立方根课时达标练 人教版数学七年级下册第3页](http://img-preview.51jiaoxi.com/2/3/15741675/0-1715863427706/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
人教版七年级下册6.2 立方根随堂练习题
展开
这是一份人教版七年级下册6.2 立方根随堂练习题,共13页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
一、单选题(共40分)
1.(本题4分)如果,,那么约等于( )
A.287.2B.28.72C.13.33D.133.3
2.(本题4分)下列说法错误的是 ( )
A.1是1的算术平方根B.C.-27的立方根是-3D.
3.(本题4分)下列说法中正确的是( )
A.4的平方根是2B.平方根是它本身的数只有0
C.没有立方根D.立方根是它本身的数只有0和1
4.(本题4分)若,则的立方根是( )
A.B.C.D.
5.(本题4分)下列说法正确的是( )
A.4的平方根是B.8的立方根是
C.没有立方根D.9的平方根是3
6.(本题4分)下列运算正确的是( )
A.B.C.D.
7.(本题4分)下列说法正确的是( )
A.一个数的平方等于他本身,则这个数是或
B.一个数的立方等于它本身,则这个数是或
C.一个数的平方根等于他本身,则这个数是或
D.一个数的立方根等于它本身,则这个数是或
8.(本题4分)0.27的立方根是( )
A.±B.0.3C.D.±0.3
9.(本题4分)下列说法正确的是( )
A.1的立方根是它本身B.4的平方根是2
C.9的立方根是3D.0没有算术平方根
10.(本题4分)下列式子中,运算正确的是( )
A.B.C.D.
二、填空题(共30分)
11.(本题3分)设实数x,y,z适合9x3=8y3=7z3,,则= ,
= .
12.(本题3分)一个数的三次方是它的本身,那么这个数是 .
13.(本题3分)81的算术平方根为 ,27的立方根是 .
14.(本题3分)用计算器求值,填空:
(1)≈ (精确到十分位);
(2)≈ (精确到个位);
(3)-≈ (精确到0.1);
(4)≈ (精确到0.001).
15.(本题3分)若某正数的两个平方根分别是与,则b的立方根是 .
16.(本题3分)若,则 .
17.(本题3分)一个正方体的棱长增加2cm后,体积为125cm3.这个正方体原来的棱长为 cm.
18.(本题3分)81的平方根 ; = ;= .
19.(本题3分)计算:= ;= ;=
20.(本题3分),则a= .
三、解答题(共50分)
21.(本题10分)观察发现:
(1)表格中x=______,y=______.
应用:(2)利用a与数位的规律解决下面两个问题:
①已知≈ 3.16,则≈________,≈________;
②已知= k,=__________,=__________(用含k的式子表示).
拓展:(3)= m,=__________,=__________(用含m的式子表示)
22.(本题10分)现场学习:
在一次数学兴趣小组活动中,老师和几个同学一起探讨:在an=b中,a,b,n三者关系.
同学甲:已知a,n,可以求b,是我们学过的乘方运算,其中b叫做a的n次方.如:(﹣2)3=﹣8,其中﹣8是﹣2的3次方.
同学乙:已知b,n,可以求a,是我们学过的开方运算,其中a叫做b的n次方根.如:(±2)2=4,其中±2 是4的二次方根(或平方根);(﹣3)3=﹣27,其中﹣3是﹣27的三次方根(或立方根).
老师:两位同学说的很好,那么请大家计算:
(1)81的四次方根等于 ;﹣32的五次方根等于 .
同学丙:老师,如果已知a和b,那么如何求n呢?又是一种什么运算呢?
老师:这个问题问的好,已知a,b,可以求n,它是一种新的运算,称为对数运算.
这种运算的定义是:若an=b(a>0,a≠1),n叫做以a为底b的对数,记作:n=lgab.例如:23=8,3叫做 以2为底8的对数,记作3=lg28.根据题意,请大家计算:
(2)lg327= ; ()﹣2+﹣lg4= .
随后,老师和同学们又一起探究出对数运算的一条性质:如果a>0,a≠1,M>0,N>0,那么lgaMN=lgaM+lgaN.
(3)请你利用上述性质计算:lg53+lg5.
23.(本题10分)(1)已知一个正方体盒子的体积比一个棱长为厘米的正方体的体积大立方厘米,求这个盒子的棱长?
(2)已知,求的值.
24.(本题10分)求的值: (1)(x-1)2=9;(2)8x3-27=0
25.(本题10分)请认真阅读下面的材料,再解答问题.
依照平方根(即二次方根)和立方根(即三次方根)的定义,可给出四次方根、五次方根的定义.
比如:若,则叫的二次方根;若,则叫的三次方根;若,则叫的四次方根.
(1)依照上面的材料,请你给出五次方根的定义:______;
(2)625的四次方根为______;的五次方根为______;
(3)求下列的值:
①;
②.
题号
一
二
三
总分
得分
a
…
0.0 001
0.01
1
100
10 000
…
…
0.01
x
1
y
100
…
参考答案:
1.C
【分析】根据“被开方数的小数点每向右(或左)移动三位,开方后立方根的小数点就向右(或左)移动一位”即可求解.
【详解】解:∵,
∴.
故选:C
【点睛】本题考出来一个数和它的立方根的小数点移动规律,理解规律是解题关键.
2.D
【详解】略
3.B
【分析】题考查了平方根、算术平方根、立方根的性质,先理解正数的平方根有两个且它们互为相反数;0的平方根和算术平方根是它本身;1的算术平方根是它本身;负数没有平方根和算术平方根,但是有立方根;再根据以上性质对四个选项进行分析即得.解题关键是区分平方根、算术平方根和立方根的性质的不同点.另外,特殊值法是解本题的有效方法.
【详解】解:A选项4的平方根是,故此选项错误;
B选项平方根是它本身的数只有0,此选项正确;
C选项的立方根是,故此选项错误;
D选项立方根是它本身的数有0,1和,故此选项错误.
故选:B.
4.A
【分析】直接根据立方根的定义作答即可.
【详解】的立方根是
故选:A.
【点睛】本题主要考查了立方根的定义,熟练掌握立方根的意义是解答本题的关键.如果一个数x的立方等于a,即,那么这个数x就叫做a的立方根;正数有一个正的立方根,负数有一个负的立方根,0的立方根是0.
5.A
【分析】本题考查了平方根和立方根的定义,熟练掌握平方根和立方根的定义是解题的关键.
根据平方根和立方根的定义进行选择即可.
【详解】A、的平方根是,故A正确;
B、的立方根是2,故B错误;
C、的立方根是,故C错误;
D、的平方根是,故D错误;
故选:A.
6.C
【分析】根据有理数的乘方,算术平方根,立方根的计算法则求解即可.
【详解】解:A、,计算错误,不符合题意;
B、,计算错误,不符合题意;
C、,计算正确,符合题意;
D、,计算错误,不符合题意;
故选C.
【点睛】本题主要考查了有理数的乘方,算术平方根,立方根,熟知相关计算法则是解题的关键.
7.A
【分析】根据平方、立方、平方根、立方根的概念判断即可.
【详解】解:A、一个数的平方等于它本身,这个数是0,1,故选项正确;
B、一个数的立方等于它本身,这个数是0,1,-1,故选项错误;
C、一个数的平方根等于它本身,这个数是0,故选项错误;
D、一个数的立方根等于它本身,这个数是0,1,-1,故选项错误;
故选A.
【点睛】本题是对平方,平方根,算术平方根,立方根的考查,熟记一些特殊数的性质是解题的关键.
8.C
【详解】解:0.27的立方根=.故选C.
9.A
【分析】根据立方根与平方根的定义即可求出答案.
【详解】解:A、1的立方根是它本身,故此选项符合题意;
B、4的平方根是,故此选项不符合题意;
C、9的立方根是,故此选项不符合题意;
D、0的算术平方根是0,故此选项不符合题意.
故选:A.
【点睛】本题考查平方根与立方根,解题的关键是正确理解立方根与平方根的定义.
10.D
【分析】根据算术平方根与立方根的性质逐项判断即可得.
【详解】解:A、,则此项错误,不符合题意;
B、,则此项错误,不符合题意;
C、,所以,则此项错误,不符合题意;
D、,则此项正确,符合题意;
故选:D.
【点睛】本题考查了算术平方根与立方根,熟练掌握算术平方根与立方根的性质是解题关键.
11.
【详解】试题解析:设9x3=8y3=7z3=k3,则
x=,y=,z=,
从而1==
故k=
故=,
=.
故答案为 ;
12.-1、0或1
【分析】根据立方根判断即可.
【详解】一个数的三次方是它的本身,那么这个数是-1、0或1
【点睛】本题考查了有理数的乘方,注意三次方即为立方根等于本身的数有三个.
13. 9 3
【分析】根据求一个数的算术平方根和立方根求解即可.
【详解】解:
故答案为:9,3.
【点睛】本题考查了求一个数的算术平方根和立方根,正确的计算是解题的关键.
14. 94.6 111 -11.4 0.449
【详解】试题分析:先利用计算器求值,然后按要求取近似值可得:
(1)≈94.6;
(2)≈111;
(3)≈11.4;
(4)≈0.449.
15.2
【分析】根据一个正数的两个平方根互为相反数列出关于a、b的方程,解方程求出b的值,再根据立方根的定义进行求解即可.
【详解】解:∵某正数的两个平方根分别是与,
∴,
∴,
∴,
∵8的立方根是2,
∴b的立方根是2,
故答案为:2.
【点睛】本题主要考查了求一个数的立方根,平方根的定义,熟知一个正数的两个平方根互为相反数是解题的关键.
16.1
【分析】根据“”可求a和b的值,从而可求答案.
【详解】
.
故答案为1.
【点睛】本题考查的是立方根和算术平方根的定义与性质,熟知这些是解题的关键.
17.3
【分析】设这个正方体原来的棱长为xcm,根据正方体的体积公式计算即可.
【详解】解:设这个正方体原来的棱长为xcm,根据题意,得
(x+2)3=125,
∴x+2=5,
∴x=3.
即这个正方体原来的棱长为3cm.
故答案为为:3.
【点睛】本题考查根据立方根的实际应用,解题关键是熟练掌握求立方根的方法,同时明确题意.
18. ±9 -5
【分析】分别利用平方根以及立方根的性质化简即可.
【详解】解:81的平方根是:±9,
=﹣5,
=.
故答案为±9,﹣5,.
【点睛】此题主要考查了平方根以及立方根的计算,属于简单题,正确掌握相关定义是解题关键.
19. -4 3
【分析】(1)根据立方根的定义计算即可;(2)根据二次根式的乘方法则计算即可;(3)根据绝对值的性质计算即可.
【详解】(1)∵(-4)3=-64,
∴=-4,
(2)=()()=3,
(3)∵1
相关试卷
这是一份数学七年级下册6.2 立方根随堂练习题,共3页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学人教版七年级下册6.2 立方根同步测试题,共4页。试卷主要包含了13的立方根是,下列语句正确的是,下列说法中正确的是,已知=1﹣a2,则a的值为,计算,下列计算中错误的是,有一个数值转换器,流程如下等内容,欢迎下载使用。
这是一份数学人教版6.2 立方根复习练习题,共4页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)