所属成套资源:广东省各地市中考数学模拟试卷及解析
2024年广东省广州市中考数学三模训练试卷解析卷
展开
这是一份2024年广东省广州市中考数学三模训练试卷解析卷,文件包含2024年广东省广州市中考数学三模训练试卷解析卷doc、2024年广东省广州市中考数学三模训练试卷doc等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。
3.回答填空题时,请将每小题的答案直接填写在答题卡中对应横线上。写在本试卷上无效。
4.回答解答题时,每题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),
请将解答过程书写在答题卡中对应的位置上。写在本试卷上无效。
5.考试结束后,将本试卷和答题卡一并交回。
第一部分 选择题(共30分)
一、选择题(本大题共10小题,每小题3分,共30分。在每小题的四个选项中,只有一项符合题目要求)
1. 2025的相反数是( )
A. B. C. D.
【答案】A
【解析】
【分析】根据相反数的定义进行求解即可.
【详解】解:的相反数是,
故选A.
2.5G是第五代移动通信技术,5G网络理论下载速度可以达到每秒1300000KB以上.
用科学记数法表示1300000是( )
A.13×105B.1.3×105C.1.3×106D.1.3×107
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值1时,n是正数;当原数的绝对值<1时,n是负数.
【解答】解:1300000=1.3×106,
故选:C.
3.中国“二十四节气”已被正式列入联合国教科文组织人类非物质文化遗产代表作品录,下列四幅作品分别代表“立春”“谷雨”“白露”“大雪”,其中是中心对称图形的是( )
A. B.
C. D.
【答案】D
【分析】本题考查了中心对称图形的知识,把一个图形绕某一点旋转后,能够与原图形重合,那么这个图形就叫做中心对称图形,熟练掌握中心对称图形的概念,是解题的关键.
【详解】解:A、绕某一点旋转后,不能够与原图形重合,故不是中心对称图形,故不符合题意;
B、绕某一点旋转后,不能够与原图形重合,故不是中心对称图形,故不符合题意;
C、绕某一点旋转后,不能够与原图形重合,故不是中心对称图形,故不符合题意;
D、绕某一点旋转后,能够与原图形重合,故是中心对称图形,故符合题意;
故选:D.
4.下列运算,与(a3)4计算结果相同的是( )
A.a5+a2B.a2•a6
C.a24÷a2(a≠0)D.a4•(a4)2
【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.
【解答】解:(a3)4=a12,
A、a5与a2不能合并,故此选项不符合题意;
B、a2•a6=a8,故此选项不符合题意;
C、a24÷a2=a22(a≠0),故此选项不符合题意;
D、a4•(a4)2=a4•a8=a12,故此选项符合题意;
故选:D.
5.方程 的解是( )
A.x=2B.x=﹣2C.x=﹣3D.x=3
【分析】按照解分式方程的步骤,进行计算即可解答.
【解答】解:,
x(x+1)﹣3(x﹣1)=(x+1)(x﹣1),
解得:x=2,
检验:当x=2时,(x+1)(x﹣1)≠0,
∴x=2是原方程的根,
故选:A.
6.关于一次函数y=﹣2x+4,下列说法不正确的是( )
A.图象不经过第三象限
B.y随着x的增大而减小
C.图象与x轴交于(﹣2,0)
D.图象与y轴交于(0,4)
【分析】由k=﹣2<0,b=4>0,可得图象经过一、二、四象限,y随x的增大而减小,再分别求解一次函数与坐标轴的交点坐标,从而可得答案.
【解答】解:∵y=﹣2x+4,k=﹣2<0,b=4>0,
∴图象经过一、二、四象限,y随x的增大而减小,
故A,B不符合题意;
当y=0时,﹣2x+4=0,解得x=2,
∴图象与x轴交于(2,0),故C符合题意;
当x=0时,y=4,
∴图象与y轴交于(0,4),故D不符合题意;
故选:C.
7.如图为商场某品牌椅子的侧面图,,与地面平行,,则( )
A.70°B.65°C.60°D.50°
【答案】A
【分析】根据平行得到,再利用外角的性质和对顶角相等,进行求解即可.
【详解】解:由题意,得:,
∴,
∵,
∴,
∴;
故选A.
8.港珠澳大桥是世界上最长的跨海大桥,被誉为“现代世界七大奇迹”的超级工程,
它是我国从桥梁大国走向桥梁强国的里程碑之作.港珠澳大桥主桥为三座大跨度钢结构斜拉桥,
其中九洲航道桥主塔造型取自“风帆”,寓意“扬帆起航”.某校九年学生为了测量该主塔的高度,
站在B处看塔顶A,仰角为,然后向后走160米(米),到达C处,此时看塔顶A,仰角为,
则该主塔的高度是( )
A.80米B.米C.160米D.米
【答案】B
【分析】
过点A作于点D,先根据三角形的外角性质可得,从而可得米,然后在中,利用锐角三角函数的定义求出的长,即可解答.
【详解】解:如图,过点A作于点D,
根据题意得:,
∵,
∴,
∴,
∴米,
在中,米.
即该主塔的高度是米.
故选:B
9.如图,在四边形中,,,,分别是边,上的动点(含端点,
但点不与点重合)点,分别是线段,的中点,若线段的最大值为2.5,
则的长为( )
A.5B.C.2.5D.3
【答案】D
【分析】根据三角形的中位线定理,可得EF= DN,DN=2EF=5,
利用勾股定理求出AD的长,即得结论.
【详解】解:∵点E、F分别为DM、MN的中点,
∴EF= DN,
∵EF最大值为2.5,
∴当DN最大,即当N与B重合时,有DN=2EF=5,
∴,
∴解得AD=3,
故选:D.
10.已知:中,是中线,点在上,且,.则 =( )
A.B.C.D.
【答案】B
【分析】根据已知得出,则,
进而证明,得出,即可求解.
【详解】解:∵中,是中线,
∴,
∵,
∴,,
∴,
又∵,
∴,
∴,
∵,
∴,
∴,
∴,
即,
,
故选:B.
第二部分 非选择题(共90分)
二、填空题(本题有6个小题,每小题3分,共18分)
11. 因式分解: .
【答案】
【分析】先提公因式,再用平方差公式分解.
【详解】解:
12 . 一个袋子中装有4个黑球和个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,
摸到白球的概率为,则白球的个数为___________
【答案】6
【分析】根据白球概率求出黑球概率,黑球共有4个,就可以求出球的总数,再减去黑球个数即可解答.
【详解】解:∵摇匀后随机摸出一个,摸到白球的概率为,
∴摸到黑球的概率为.
∵袋子中有4个黑球,
∴袋子中共有10个球,
∴白球有6个.
故答案为:6.
13.若二次函数的图像经过点,,则 (选填:﹥,﹤,=)
【答案】
【分析】本题考查了二次函数的图象与性质,根据二次函数的对称轴和开口方向,判断所给点到对称轴的距离大小即可求解.
【详解】解:∵二次函数的对称轴为直线,且图象开口向上,
又,,,
∴
故答案为:
14.如图,正六边形ABCDEF的边长为2,以顶点A为圆心,AB的长为半径画圆,则图中阴影部分的面积为 .
【答案】/
【分析】延长FA交⊙A于G,如图所示:根据六边形ABCDEF是正六边形,AB=2,利用外角和求得∠GAB=,再求出正六边形内角∠FAB=180°-∠GAB=180°-60°=120°, 利用扇形面积公式代入数值计算即可.
【详解】解:延长FA交⊙A于G,如图所示:
∵六边形ABCDEF是正六边形,AB=2,
∴∠GAB=,
∠FAB=180°-∠GAB=180°-60°=120°,
∴,
故答案为.
15.某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.
图中、分别表示去年、今年水费(元)与用水量()之间的关系.
小雨家去年用水量为150,若今年用水量与去年相同,水费将比去年多 元.
【答案】210.
【分析】根据函数图象中的数据可以求得时,对应的函数解析式,从而可以求得时对应的函数值,由的的图象可以求得时对应的函数值,从而可以计算出题目中所求问题的答案,本题得以解决.
【详解】设当时,对应的函数解析式为,
,得,
即当时,对应的函数解析式为,
当时,,
由图象可知,去年的水价是(元/),故小雨家去年用水量为150,
需要缴费:(元),
(元),
即小雨家去年用水量为150,若今年用水量与去年相同,水费将比去年多210元,
故答案为210.
数学课上,老师让同学们以“矩形的折叠”为主题开展数学活动.如图,小明把矩形沿折叠,
使点落在边的点处,其中,且,则矩形的面积为______
【答案】80
【分析】首先根据折叠的性质得到,然后根据同角的余角相等得到,进而得到,设,,则,,根据定理求出,,最后利用矩形面积公式求解即可.
【详解】解:∵矩形沿折叠,使点C落在边的点F处,
∴,
∴,
∵四边形是矩形,
∴,
∴,
∴,
∴,
∴设,,则,,
∴,
∵,
∴,
∵,,
∴,即,
∴解得:,负值舍去,
∴,,
∴矩形的面积.
故答案为:80
三.解答题(共9小题,满分72分)
17.(4分)解不等式组,并写出满足条件的正整数解.
【答案】不等式组的解集为<,正整数解为1,2
【分析】分别求出每一个不等式的解集,根据口诀:
同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【详解】解:
解不等式①,得:x>﹣1,
解不等式②,得:,
∴不等式组的解集为<,
则不等式组的正整数解为1,2.
18.(4分)如图,在中,点E,F在对角线上,,求证:.
【答案】见解析
【分析】先根据平行四边形的性质得到,,再证明,即可利用证明,即可证明.
【详解】证明:∵四边形是平行四边形,
∴,,
∴
∵,
∴,
∴.
19.(6分)近几年中学生近视的现象越来越严重,为响应国家的号召,某公司推出了如图1所示的护眼灯,
其侧面示意图(台灯底座高度忽略不计)如图2所示,其中灯柱BC=18cm,灯臂CD=33cm,
灯罩DE=20cm,BC⊥AB,CD,DE分别可以绕点C,D上下调节一定的角度.经使用发现:
当∠DCB=140°,且ED∥AB时,台灯光线最佳.求此时点D到桌面AB的距离.
(精确到0.1cm,参考数值:sin50°≈0.77,cs50°≈0.64,tan50°≈1.19)
【答案】点D到桌面AB的距离约为43.4cm
【分析】根据题意,作出合适的辅助线,然后根据锐角三角函数,即可得到DF的长,再根据FG=CB,即可求得DG的长,从而可以解答本题.
【详解】解:过点D作DG⊥AB,垂足为G,过点C作CF⊥DG,垂足为F,如图所示,
∵CB⊥AB,FG⊥AB,CF⊥FG,
∴∠B=∠BGF=∠GFC=90°,
∴四边形BCFG为矩形,
∴∠BCF=90°,FG=BC=18cm,
又∵∠DCB=140°,
∴∠DCF=50°,
∵CD=33cm,∠DFC=90°,
∴DF=CD•sin50°≈33×0.77=25.41(cm),
∴DG≈25.41+18≈43.4(cm),
答:点D到桌面AB的距离约为43.4cm.
20.(6分)先化简,再求值:,其中.
【答案】,
【解析】
【分析】先根据分式的混合运算法则化简,然后再将代入计算即可解答.
【详解】解:
.
当时,
原式.
21.(8分)中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如下尚不完整的统计图.
请根据以上信息,解决下列问题:
(1)本次调查所得数据的众数是________部,中位数是________部;
(2)扇形统计图中“部”所在扇形的圆心角为________度;
(3)请将条形统计图补充完整;
(4)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,请用列表或画树状图的方法求他们恰好选中同一名著的概率.
【答案】(1)1,2;(2)°;(3)见解析;(4)见解析,
【分析】(1)先根据调查的总人数,求得2部对应的人数,进而得到本次调查所得数据的众数以及中位数;
(2)根据扇形圆心角的度数=部分占总体的百分比×360°,即可得到“4部”所在扇形的圆心角;
(3)根据2部对应的人数,即可将条形统计图补充完整;
(4)根据列表所得的结果,可判断他们选中同一名著的概率.
【详解】解:(1)调查的总人数为:10÷25%=40,
∴2部对应的人数为40-2-14-10-8=6,
∴本次调查所得数据的众数是1部,
∵2+14+10=26>21,2+14<20,
∴中位数为2部.
故答案为:1,2
(2)扇形统计图中“4部”所在扇形的圆心角为:
故答案为:72°.
(3)2部对应的人数为:40-2-14-10-8=6人
补全统计图如图所示.
(4)将《西游记》、《三国演义》、《水浒传》、《红楼梦》分别记作A,B,C,D,
画树状图可得:
由图可知,共有16种等可能的结果,其中选中同一名著的有4种,.
故答案为:.
22.(10分) 已知、两点是一次函数和反比例函数图象的两个交点,
点坐标为.
(1)求一次函数和反比例函数的解析式;
(2)求的面积;
(3)观察图象,直接写出不等式的解集;
【答案】(1),
(2)
(3)不等式的解集为:或
【分析】(1)根据待定系数求得反比例函数解析式,进而求得点的坐标,根据的坐标待定系数法求一次函数解析式即可;
(2)求得直线与轴交于点,根据求解即可
(3)由图象可得,直线在双曲线上方部分时,求得的取值范围;
【详解】(1)把代入,得,
所以反比例函数解析式为,
把代入,得,
解得,
把和代入,得,
解得,
所以一次函数的解析式为;
(2)设直线与轴交于点,
中,令,则,
即直线与轴交于点,
∴;
(3)由图象可得,不等式的解集为:或.
23.(10分)如图,在单位长度为1的网格中,点O,A,B均在格点上,,,
以O为圆心,为半径画圆,请按下列步骤完成作图,并回答问题:
①过点A作切线,且(点C在A的上方);
②连接,交于点D;
③连接,与交于点E.
(1)求证:为的切线;
(2)求的长度.
【答案】(1)画图见解析,证明见解析
(2)
【解析】
【分析】(1)根据题意作图,首先根据勾股定理得到,然后证明出,得到,即可证明出为的切线;
(2)首先根据全等三角形的性质得到,然后证明出,利用相似三角形的性质求解即可.
【小问1详解】
如图所示,
∵是的切线,
∴,
∵,,
∴,
∵,,
∴,
∴,
又∵,,
∴,
∴,
∴,
∵点D在上,
∴为的切线;
小问2详解】
∵,
∴,
∵,,
∴,
∴,即,
∴解得.
24.(12分)已知二次函数的图像经过两点.
(1)求b的值.
(2)当时,该函数的图像的顶点的纵坐标的最小值是________.
(3)设是该函数图像与x轴的一个公共点,当时,结合函数的图像,直接写出a的取值范围.
【答案】(1);(2)1;(3)或.
【解析】
【分析】(1)将点代入求解即可得;
(2)先求出二次函数的顶点的纵坐标,再利用完全平方公式、不等式的性质求解即可得;
(3)分和两种情况,再画出函数图象,结合图象建立不等式组,解不等式组即可得.
详解】解:(1)将点代入得:,
两式相减得:,
解得;
(2)由题意得:,
由(1)得:,
则此函数的顶点的纵坐标为,
将点代入得:,
解得,
则,
下面证明对于任意的两个正数,都有,
,
(当且仅当时,等号成立),
当时,,
则
(当且仅当,即时,等号成立),
即,
故当时,该函数的图像的顶点的纵坐标的最小值是1;
(3)由得:,
则二次函数的解析式为,
由题意,分以下两种情况:
①如图,当时,则当时,;当时,,
即,
解得;
②如图,当时,
当时,,
当时,,
解得,
综上,的取值范围为或.
25.(12分)如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.
(1)证明与推断:
①求证:四边形CEGF是正方形;
②推断:的值为 :
(2)探究与证明:
将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,
试探究线段AG与BE之间的数量关系,并说明理由:
(3)拓展与运用:
正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,
如图(3)所示,延长CG交AD于点H.若AG=6,GH=2,则BC= .
【答案】(1)①四边形CEGF是正方形;②;(2)线段AG与BE之间的数量关系为AG=BE;(3)3
【分析】(1)①由、结合可得四边形CEGF是矩形,再由即可得证;
②由正方形性质知、,据此可得、,利用平行线分线段成比例定理可得;
(2)连接CG,只需证∽即可得;
(3)证∽得,设,知,由得、、,由可得a的值.
【详解】(1)①∵四边形ABCD是正方形,
∴∠BCD=90°,∠BCA=45°,
∵GE⊥BC、GF⊥CD,
∴∠CEG=∠CFG=∠ECF=90°,
∴四边形CEGF是矩形,∠CGE=∠ECG=45°,
∴EG=EC,
∴四边形CEGF是正方形;
②由①知四边形CEGF是正方形,
∴∠CEG=∠B=90°,∠ECG=45°,
∴,GE∥AB,
∴,
故答案为;
(2)连接CG,
由旋转性质知∠BCE=∠ACG=α,
在Rt△CEG和Rt△CBA中,
=、=,
∴=,
∴△ACG∽△BCE,
∴,
∴线段AG与BE之间的数量关系为AG=BE;
(3)∵∠CEF=45°,点B、E、F三点共线,
∴∠BEC=135°,
∵△ACG∽△BCE,
∴∠AGC=∠BEC=135°,
∴∠AGH=∠CAH=45°,
∵∠CHA=∠AHG,
∴△AHG∽△CHA,
∴,
设BC=CD=AD=a,则AC=a,
则由得,
∴AH=a,
则DH=AD﹣AH=a,CH==a,
∴由得,
解得:a=3,即BC=3,
故答案为3.
相关试卷
这是一份2024年广东省广州市中考数学三模训练卷(解析版),文件包含2024年广东省广州市中考数学三模训练卷解析版doc、2024年广东省广州市中考数学三模训练卷doc等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
这是一份2024年广东省深圳市中考数学复习模拟训练试卷(三模)(原卷+解析),文件包含2024年广东省深圳市中考数学复习模拟训练试卷三模解析卷docx、2024年广东省深圳市中考数学复习模拟训练试卷三模docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
这是一份备战2024年广东省广州市中考数学复习训练试卷(解析版),文件包含备战2024年广东省广州市中考数学复习训练试卷解析版docx、备战2024年广东省广州市中考数学复习训练试卷docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。