|试卷下载
终身会员
搜索
    上传资料 赚现金
    北京市顺义区杨镇第一中学2021-2022学年高一下学期期中考试数学试卷(解析版)
    立即下载
    加入资料篮
    北京市顺义区杨镇第一中学2021-2022学年高一下学期期中考试数学试卷(解析版)01
    北京市顺义区杨镇第一中学2021-2022学年高一下学期期中考试数学试卷(解析版)02
    北京市顺义区杨镇第一中学2021-2022学年高一下学期期中考试数学试卷(解析版)03
    还剩9页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京市顺义区杨镇第一中学2021-2022学年高一下学期期中考试数学试卷(解析版)

    展开
    这是一份北京市顺义区杨镇第一中学2021-2022学年高一下学期期中考试数学试卷(解析版),共12页。试卷主要包含了的值为,向量,若向量满足,则向量夹角的大小为,在中,,则角等内容,欢迎下载使用。

    数学
    (考试时间120分钟,满分150分)
    一、选择题:共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.
    1.的值为( )
    A.B.C.D.
    2.向量( )
    A.B.C.D.
    3.在复平面内复数Z=i(1﹣2i)对应的点位于
    A.第一象限B.第二象限C.第三象限D.第四象限
    4.已知某圆柱底面的半径为1,高为2,则该圆柱的表面积为( )
    A.B.C.D.
    5.函数的图象中,相邻两条对称轴之间的距离是( )
    A.B.C.D.
    6.若向量满足,则向量夹角的大小为( )
    A.B..C.D.
    7.函数的图像,向右平移个单位长度后得到函数,则函数的解析式为( )
    A.B.
    C.D.
    8.已知,其中在一个周期内的图象如图所示.则( )
    A.B.
    C.D.
    9.在中,,则角( )
    A.B.C.D.
    10.已知向量,,在正方形网格中的位置如图所示.若网格纸上小正方形的边长为,则的最小值是( )
    A.B.C.D.
    二、填空题:共5小题,每小题5分,共25分.
    11.已知向量,若,则 .
    12.若,则= .
    13.已知复数满足(其中为虚数单位),则复数 ,复数的虚部为 .
    14.已知向量,(),且,,则向量的坐标可以是 .(写出一个即可)
    15.如图,平面内有三个向量、、,其中与与的夹角为,与的夹角为,且,,若,则的值为 .
    三、解答题:本大题共6个小题,共85分.
    16.已知为虚数单位,复数.
    (1)若是纯虚数,求实数的值;
    (2)若,求的值.
    17.已知函数.
    (1)求函数的最小正周期;
    (2)求函数的单调递增区间;
    (3)设是第三象限角,且,求的值.
    18.已知.
    (1)求向量的坐标;
    (2)设向量的夹角为,求的值;
    (3)若向量与互相垂直,求的值.
    19.在中,角所对的边分别为,已知.
    (1)若,求角的大小;
    (2)若,求边上的高.
    20.已知函数.
    (1)求的值;
    (2)求函数在区间的最大值和最小值.
    21.的内角的对边分别为,已知.
    (1)求角的大小;
    (2)若,求的面积;
    (3)若角为钝角,直接写出的取值范围.
    1.B
    【分析】运用诱导公式化简角,再由特殊角的三角函数值即得.
    【详解】
    故选:B.
    2.C
    【分析】利用向量加减法则化简即可.
    【详解】由.
    故选:C
    3.A
    【详解】试题分析:根据复数乘法的运算法则,我们可以将复数Z化为a=bi(a,b∈R)的形式,分析实部和虚部的符号,即可得到答案.
    解:∵复数Z=i(1﹣2i)=2+i
    ∵复数Z的实部2>0,虚部1>0
    ∴复数Z在复平面内对应的点位于第一象限
    故选A
    点评:本题考查的知识是复数的代数表示法及其几何意义,其中根据复数乘法的运算法则,将复数Z化为a=bi(a,b∈R)的形式,是解答本题的关键.
    4.C
    【解析】根据圆柱表面积的计算公式直接求解即可.
    【详解】解:因为圆柱的底面半径为1,高为2,
    所以圆柱的表面积.
    故选:C.
    【点睛】本题考查了圆柱表面积的求法,属基础题.
    5.C
    【分析】求出最小正周期可得.
    【详解】函数的最小正周期是,因此相邻两条对称轴之间的距离是.
    故选:C.
    6.D
    【分析】利用向量的模长公式展开可求得,再结合向量夹角的范围即得夹角.
    【详解】由两边取平方,,
    设向量夹角为,则有,则,
    因,故.
    故选:D.
    7.A
    【分析】根据函数图象平移“左加右减,上加下减”的原则,整理后即得所求.
    【详解】由函数向右平移个单位长度得:
    故选:A.
    8.B
    【分析】根据图象最值,可求得A值,根据图象的周期性,结合公式,即可求得值,根据五点作图法,代入数据,即可得值,即可得答案.
    【详解】观察可得图象最大值为2,最小值为-2,所以A=2,
    因为,所以,解得,
    根据五点作图法可得:,解得,
    所以.
    故选:B
    9.D
    【分析】将代入条件,整理得,再由和正弦定理推得,消去得的方程,求解即得.
    【详解】由可得,展开化简得:,①
    又由和正弦定理可得:,②
    将②代入①,可得:,即,
    由可知是锐角,则,故有或,即或.
    当时,由可得,符合题意;
    当时,由可得,显然不合题意,故.
    故选:D.
    10.C
    【分析】利用向量的几何意义,结合平面直角坐标系进行求解
    【详解】如图以向量的起点为原点建立平面直角坐标系,设的终点为A,的终点为B,根据向量的几何意义可知的最小值,表达是A点到向量的距离,即图中虚线段的长度,
    故可设向量所在的直线方程为,即,点,故
    故选:C
    11.2
    【分析】根据向量共线的充要条件的坐标表示式计算即得.
    【详解】由可得,解得.
    故答案为:2.
    12.3
    【详解】试题分析:.
    考点:恒等变换公式.
    13. ##
    【分析】利用复数的乘除法运算法则求出复数,即得其虚部.
    【详解】由可得,
    故复数的虚部为.
    故答案为:;
    14.(答案不唯一)
    【分析】根据已知条件列关于,的方程组,解方程组即可求解.
    【详解】向量,(),且,,
    所以,取符合题意,
    所以向量的坐标可以是,
    故答案为:(答案不唯一)
    15.6
    【详解】
    故答案为:6
    16.(1)
    (2)
    【分析】(1)根据纯虚数的定义,列出方程组,解之即得;
    (2)先求出复数,代入所求式,利用复数乘除运算的相关性质计算即得.
    【详解】(1)由是纯虚数,
    可知解得,;
    (2)时,,则
    17.(1)
    (2)
    (3)
    【分析】(1)根据周期公式计算即得;
    (2)将看成整体,利用正弦函数的递增区间列出不等式组,求解即得;
    (3)结合的范围,求出,利用二倍角公式求得和的值,最后利用差角公式代入计算即得.
    【详解】(1)由可得,故函数的最小正周期为;
    (2)由可得,,
    则函数的单调递增区间为:;
    (3)由,且是第三象限角可得,,

    于是,.
    18.(1)
    (2)
    (3)1
    【分析】(1)利用向量的坐标线性运算计算即得;
    (2)利用向量的数量积的定义式和坐标式列出方程求解即得;
    (3)利用向量垂直的充要条件列出方程,求解即得.
    【详解】(1)由可得,,
    即向量的坐标为:;
    (2)因,
    则;
    (3)依题意,,即,解得.
    19.(1)
    (2)
    【分析】(1)由正弦定理求得,再判断角的范围,即可求得角;
    (2)先由余弦定理求出角,再借助于直角三角形中三角函数的定义计算即得.
    【详解】(1)由正弦定理,,即,
    因,故,即是锐角,故;
    (2)
    如图,由余弦定理,,
    知角是锐角,则,
    作于点,在中,,
    即边上的高是.
    20.(1)
    (2),
    【分析】(1)将自变量的值代入函数式,计算即得;
    利用三角恒等变换将化简成,将看成整体,求得的范围,结合正弦函数的图象即可判断函数的最值与对应的值.
    【详解】(1)因,则;
    (2)由

    因,则令,则,
    而在上单调递增,在上上单调递减,
    故当时,即时,;当时,即时,.
    21.(1);
    (2);
    (3).
    【分析】(1)由正弦定理化边为角,整理化简得,由推得,求得角;
    (2)由余弦定理和题设条件,求出,代入三角形面积公式计算即得;
    (3)由正弦定理化边为角,再消去角,整理得,利用时正切函数的值域即可求得的取值范围.
    【详解】(1)由和正弦定理得,,
    因,
    则有,因,则得,
    又,故.
    (2)由余弦定理,,代入得,,
    因,则有,即得,
    故的面积为.
    (3)由正弦定理,可得,
    因,代入化简得:,
    因为钝角,故由可得,
    则,,即,故的取值范围是.
    【点睛】思路点睛:本题主要考查正弦定理、余弦定理在求角、面积和解析式范围上的应用,属于难题.
    解题思路即是遇到与三角形中的边相关的解析式求范围问题时,一般运用正、余弦定理将其化成内角的三角函数式,利用三角函数的有界性求其范围.
    相关试卷

    北京市顺义区第一中学2023-2024学年高一下学期期中考试数学试卷(无答案): 这是一份北京市顺义区第一中学2023-2024学年高一下学期期中考试数学试卷(无答案),共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    北京市顺义区第一中学2023-2024学年高一下学期期中考试数学试卷(无答案): 这是一份北京市顺义区第一中学2023-2024学年高一下学期期中考试数学试卷(无答案),共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    北京市顺义区第一中学2023-2024学年高一下学期期中考试数学试卷: 这是一份北京市顺义区第一中学2023-2024学年高一下学期期中考试数学试卷,共4页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map