专题11 切线问题(模拟+真题)-2024高考数学二轮复习解析几何压轴题
展开一、注意基础知识的整合、巩固。二轮复习要注意回归课本,课本是考试内容的载体,是高考命题的依据。浓缩课本知识,进一步夯实基础,提高解题的准确性和速度
二、查漏补缺,保强攻弱。在二轮复习中,对自己的薄弱环节要加强学习,平衡发展,加强各章节知识之间的横向联系,针对“一模”考试中的问题要很好的解决,根据自己的实际情况作出合理的安排。
三、提高运算能力,规范解答过程。在高考中运算占很大比例,一定要重视运算技巧粗中有细,提高运算准确性和速度,同时,要规范解答过程及书写。
四、强化数学思维,构建知识体系。同学们在听课时注意把重点要放到理解老师对问题思路的分析以及解法的归纳总结,以便于同学们在刷题时做到思路清晰,迅速准确。
五、解题快慢结合,改错反思。审题制定解题方案要慢,不要急于解题,要适当地选择好的方案,一旦方法选定,解题动作要快要自信。
六、重视和加强选择题的训练和研究。对于选择题不但要答案正确,还要优化解题过程,提高速度。灵活运用特值法、排除法、数形结合法、估算法等。
专题11 切线问题
1.(2024上·河北石家庄·高二石家庄二中校考期末)已知双曲线的左、右焦点分别为,点P为双曲线E上的一点,且,射线PN平分,交x轴于点N,若,则双曲线E的渐近线方程为( )
A.B.C.D.
2.(2024下·浙江·高二校联考开学考试)已知点A是椭圆C:的左顶点,过点A且斜率为的直线l与椭圆C交于另一点P(点P在第一象限).以原点O为圆心,为半径的圆在点P处的切线与x轴交于点Q.若,则椭圆C离心率的取值范围是( )
A.B.
C.D.
3.(2024下·浙江·高三校联考开学考试)高为3,长宽为的长方体中,以为球心的球两两相切,过点作球的切线交球于点在长方体外部,则点的轨迹长度是( )
A.B.C.D.
4.(2024下·湖南长沙·高三长郡中学校考阶段练习)双曲线的右支上一点在第一象限,,分别为双曲线的左、右焦点,为的内心,若内切圆的半径为1,则的面积等于( )
A.24B.12C.D.
5.(2022上·河南·高三专题练习)已知抛物线的焦点为,过点作两条互相垂直的直线,,分别与抛物线相交于点和点,,是抛物线上一点,且,从点引抛物线的准线的垂线,垂足为,则的内切圆的周长为( )
A.B.C.D.
6.(2024下·江苏·高二开学考试)双曲线的两个焦点为、,以的实轴为直径的圆记为,过作圆的切线与的两支分别交于、两点,且,则的离心率为( )
A.B.C.D.
7.(2024上·陕西西安·高二西安市铁一中学校考期末)如图,过双曲线的左焦点引圆 的切线,切点为,延长交双曲线右支于点,为线段的中点, 为坐标原点,若,则双曲线的离心率为( )
A.B.3C.D..
8.(2023上·安徽·高三校联考期末)法国数学家蒙日发现椭圆两条相互垂直的切线的交点的轨迹是圆,这个圆被称为“蒙日圆”,它的圆心与椭圆中心重合,半径的平方等于椭圆长半轴和短半轴的平方和.如图所示为稀圆及其蒙日圆,点均为蒙日圆与坐标轴的交点,分别与相切于点,若与的面积比为,则的离心率为( )
A.B.C.D.
9.(2024上·山东青岛·高二青岛二中校考期末)圆锥曲线具有丰富的光学性质,从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线经过椭圆的另一个焦点.直线l:与椭圆C:相切于点P,椭圆C的焦点为,,由光学性质可知(如图),则的角平分线所在直线的方程为( )
A.B.
C.D.
10.(2024上·湖北荆州·高二校联考期末)已知曲线与y轴交于A,B两点,P是曲线C上异于A,B的点,若直线AP,BP斜率之积等于,则C的离心率为( )
A.B.C.D.
11.(2024上·湖北武汉·高二华中师大一附中校考期末)已知椭圆的左焦点为,如图,过点作倾斜角为的直线与椭圆交于两点,为线段的中点,若(为坐标原点),则椭圆的离心率为( )
A.B.C.D.
12.(2024上·山东威海·高三统考期末)已知,分别为双曲线的左、右焦点,过点的直线与圆相切于点,且与双曲线的右支交于点,若,则该双曲线的离心率为( )
A.B.C.D.
13.(2023上·福建莆田·高二莆田一中校考期末)已知为椭圆上任一点,过作圆的两条切线,切点分别为,则四边形面积的最大值为( )
A.B.C.D.
14.(2024·新疆乌鲁木齐·统考一模)设抛物线的焦点为,过点且倾斜角为的直线与交于A,B两点,以为直径的圆与准线切于点,则的方程为( )
A.B.C.D.
15.(2024上·江苏常州·高二常州高级中学校考期末)已知、为双曲线的左、右焦点,若过的直线与双曲线的左支交于、两点,记的内切圆的半径为,的内切圆的半径为,若,则此双曲线离心率的值为( )
A.B.C.D.
16.(2024上·湖南娄底·高三统考期末)已知抛物线的焦点为,抛物线的准线与轴交于点,过点的直线与抛物线相切于点,连接,在中,设,则的值为( )
A.B.1C.D.2
17.(2024上·海南·高二校联考期末)已知双曲线的左、右焦点分别为,过且与轴垂直的直线与的一个交点为的内心为,若,则的离心率为( )
A.2B.C.D.
18.(2024上·北京丰台·高二统考期末)过双曲线的右焦点引圆的切线,切点为,延长交双曲线的左支于点.若,则双曲线的离心率为( )
A.B.C.D.
19.(2024上·河北唐山·高三统考期末)已知双曲线:的左、右焦点为,,,P为双曲线右支上一点,,的内切圆圆心为M,与的面积的差为1,则双曲线的离心率( )
A.2B.3C.D.
20.(2024上·天津·高二天津市第一百中学校联考期末)设,分别是双曲线(,)的左右焦点,为双曲线左支上一点,且满足,直线与双曲线的一条渐近线垂直,则双曲线的离心率为( )
A.B.C.2D.
21.(山东省部分名校2023-2024学年高三下学期2月大联考数学试题)抛物线与椭圆有相同的焦点,分别是椭圆的上、下焦点,P是椭圆上的任一点,I是的内心,交y轴于M,且,点是抛物线上在第一象限的点,且在该点处的切线与x轴的交点为,若,则 .
22.(2024下·江西·高三校联考开学考试)已知双曲线的左、右焦点分别为,过点且斜率为1的直线与的右支交于两点,若的内心恰好在它的一条高线上,则的离心率为 .
23.(2024·黑龙江齐齐哈尔·统考一模)已知为椭圆上的一个动点,过作圆的两条切线,切点分别为,则的最小值为 .
24.(2024上·上海·高二华师大二附中校考期末)已知双曲线左右焦点分别为,点为右支上一动点,圆与的延长线、的延长线和线段都相切,则 .
25.(2024下·湖北·高二应城市第一高级中学校联考开学考试)设是双曲线的右焦点,为坐标原点,过作的一条渐近线的垂线,垂足为,若的内切圆与轴切于点,且,则的离心率为 .
26.(2024上·山东青岛·高二山东省青岛第五十八中学校考期末)加斯帕尔·蒙日(图1)是18~19世纪法国著名的几何学家,他在研究圆锥曲线时发现:椭圆的任意两条互相垂直的切线的交点都在同一个圆上,其圆心是椭圆的中心,这个圆被称为“蒙日圆”(图2).则椭圆的蒙日圆的半径为
27.(2024上·河北·高三校联考期末)已知椭圆为的左、右焦点,为上的一个动点(异于左右顶点),设的外接圆面积为,内切圆面积为,则的最小值为 .
28.(2024下·江苏·高二开学考试)如图,已知椭圆和双曲线具有相同的焦点、,、、、是它们的公共点,且都在圆上,直线与轴交于点,直线与双曲线交于点,记直线、的斜率分别为、,若椭圆的离心率为,则的值为 .
29.(2024上·江西上饶·高二统考期末)如图,离心率相同的两个椭圆和分别是同一个矩形(此矩形的两组对边分别与两坐标轴平行)的内切椭圆和外接椭圆,则 .
30.(2024·吉林长春·东北师大附中校联考模拟预测)已知双曲线的左,右焦点分别为为右支上一点,的内切圆圆心为,直线交轴于点,则双曲线的离心率为 .
31.(2024下·吉林·高二梅河口市第五中学校联考开学考试)已知抛物线的焦点为,直线与轴的交点为,与的交点为,且.
(1)求的方程;
(2)延长交抛物线于为坐标原点,求的面积;
(3)延长交抛物线准线于,曲线是以为直径的圆,求点到的最小值.
32.(2023下·河南·高二校联考期中)已知两曲线和都经过点,且在点P处有公切线.
(1)求的值;
(2)设抛物线上一动点到直线的距离为,求的最小值.
33.(2024下·广东·高三校联考开学考试)已知椭圆的方程为,右焦点为,且离心率为
(1)求椭圆的方程;
(2)过点的直线与椭圆交于两点,证明:圆恒与以弦为直径的圆相切.
34.(2024下·重庆·高三重庆一中校考开学考试)在平面直角坐标系中,过直线上任一点作该直线的垂线,,线段的中垂线与直线交于点.
(1)当在直线上运动时,求点的轨迹的方程;
(2)过向圆引两条切线,与轨迹的另一个交点分别为,.
(i)证明:直线与圆也相切;
(ii)求周长的最小值.
35.(2022·全国·模拟预测)已知抛物线:的焦点为,过点且斜率为的直线与圆:相切.
(1)求的方程;
(2)设,过点作的两条切线,,切点分别为,,试求面积的取值范围.
36.(2017·全国·高考真题)(2017新课标全国卷Ⅲ文科)已知椭圆C:的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线相切,则C的离心率为
A.B.
C.D.
37.(2019·天津·高考真题)已知抛物线的焦点为,准线为.若与双曲线的两条渐近线分别交于点A和点B,且(为原点),则双曲线的离心率为
A.B.C.2D.
38.(2012·全国·高考真题)设、是椭圆:的左、右焦点,为直线上一点,是底角为的等腰三角形,则的离心率为
A.B.C.D.
39.(2014·四川·高考真题)已知是抛物线的焦点,点,在该抛物线上且位于轴的两侧,(其中为坐标原点),则与面积之和的最小值是( )
A.B.C.D.
40.(2022·全国·统考高考真题)已知椭圆,C的上顶点为A,两个焦点为,,离心率为.过且垂直于的直线与C交于D,E两点,,则的周长是 .
41.(2022·全国·统考高考真题)若双曲线的渐近线与圆相切,则 .
42.(2023·天津·统考高考真题)已知过原点O的一条直线l与圆相切,且l与抛物线交于点两点,若,则 .
43.(2008·江苏·高考真题)在平面直角坐标系中,椭圆的焦距为,以为圆心,为半径作圆,过点作圆的两切线互相垂直,则离心率 .
44.(2013·福建·高考真题)椭圆的左右焦点分别为,焦距为,若直线与椭圆的一个交点满足,则该椭圆的离心率等于
45.(2013·福建·高考真题)椭圆的左、右焦点分别为焦距为,若直线与椭圆的一个交点满足则该椭圆的离心率等于 .
46.(2021·全国·统考高考真题)已知抛物线的焦点为,且与圆上点的距离的最小值为.
(1)求;
(2)若点在上,是的两条切线,是切点,求面积的最大值.
47.(2019·全国·高考真题)已知曲线C:y=,D为直线y=上的动点,过D作C的两条切线,切点分别为A,B.
(1)证明:直线AB过定点:
(2)若以E(0,)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.
48.(2018·全国·高考真题)设抛物线的焦点为,过且斜率为的直线与交于,两点,.
(1)求的方程;
(2)求过点,且与的准线相切的圆的方程.
49.(2019·全国·高考真题)已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为−.记M的轨迹为曲线C.
(1)求C的方程,并说明C是什么曲线;
(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连结QE并延长交C于点G.
(i)证明:是直角三角形;
(ii)求面积的最大值.
专题11 导数在研究不等式的创新应用(模拟+真题)-【压轴】2024高考数学二轮复习函数与导数压轴题: 这是一份专题11 导数在研究不等式的创新应用(模拟+真题)-【压轴】2024高考数学二轮复习函数与导数压轴题,文件包含专题11导数在研究不等式的创新应用模拟+真题原卷版docx、专题11导数在研究不等式的创新应用模拟+真题解析版docx等2份试卷配套教学资源,其中试卷共52页, 欢迎下载使用。
专题8 分类讨论法(模拟+真题)-【压轴】2024高考数学二轮复习函数与导数压轴题: 这是一份专题8 分类讨论法(模拟+真题)-【压轴】2024高考数学二轮复习函数与导数压轴题,文件包含专题8分类讨论法模拟+真题原卷版docx、专题8分类讨论法模拟+真题解析版docx等2份试卷配套教学资源,其中试卷共56页, 欢迎下载使用。
专题7 最大整数与最小整数问题(模拟+真题)-【压轴】2024高考数学二轮复习函数与导数压轴题: 这是一份专题7 最大整数与最小整数问题(模拟+真题)-【压轴】2024高考数学二轮复习函数与导数压轴题,文件包含专题7最大整数与最小整数问题模拟+真题原卷版docx、专题7最大整数与最小整数问题模拟+真题解析版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。