终身会员
搜索
    上传资料 赚现金

    【三轮冲刺】高考数学(大题培优)03概率与分布列归类

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      【三轮冲刺】高考数学(大题培优)03概率与分布列归类(原卷版).docx
    • 解析
      【三轮冲刺】高考数学(大题培优)03概率与分布列归类(解析版).docx
    【三轮冲刺】高考数学(大题培优)03概率与分布列归类(原卷版)第1页
    【三轮冲刺】高考数学(大题培优)03概率与分布列归类(原卷版)第2页
    【三轮冲刺】高考数学(大题培优)03概率与分布列归类(原卷版)第3页
    【三轮冲刺】高考数学(大题培优)03概率与分布列归类(解析版)第1页
    【三轮冲刺】高考数学(大题培优)03概率与分布列归类(解析版)第2页
    【三轮冲刺】高考数学(大题培优)03概率与分布列归类(解析版)第3页
    还剩12页未读, 继续阅读
    下载需要25学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【三轮冲刺】高考数学(大题培优)03概率与分布列归类

    展开

    这是一份【三轮冲刺】高考数学(大题培优)03概率与分布列归类,文件包含三轮冲刺高考数学大题培优03概率与分布列归类原卷版docx、三轮冲刺高考数学大题培优03概率与分布列归类解析版docx等2份试卷配套教学资源,其中试卷共53页, 欢迎下载使用。



    【题型一】 超几何分布型分布列
    1.(2023·湖北·模拟预测)某区域中的物种拥有两个亚种(分别记为种和种).为了调查该区域中这两个亚种的数目,某生物研究小组计划在该区域中捕捉个物种,统计其中种的数目后,将捕获的生物全部放回,作为一次试验结果.重复进行这个试验共次,记第次试验中种的数目为随机变量.设该区域中种的数目为,种的数目为,每一次试验均相互独立.
    (1)求的分布列;
    (2)记随机变量.已知,;
    (ⅰ)证明:,;
    (ⅱ)该小组完成所有试验后,得到的实际取值分别为.数据的平均值,方差.采用和分别代替和,给出,的估计值.
    2.(23·24高三上·江苏南通·阶段练习)某班为了庆祝我国传统节日中秋节,设计了一个小游戏:在一个不透明箱中装有4个黑球,3个红球,1个黄球,这些球除颜色外完全相同.每位学生从中一次随机摸出3个球,观察颜色后放回.若摸出的球中有个红球,则分得个月饼;若摸出的球中有黄球,则需要表演一个节目.
    (1)求一学生既分得月饼又要表演节目的概率;
    (2)求每位学生分得月饼数的概率分布和数学期望.
    3.(2024·广东广州·二模)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区植物覆盖面积与某种野生动物数量的关系,将其分成面积相近的若干个地块,从这些地块中随机抽取20个作为样区,调查得到样本数据,其中,和,分别表示第个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量(单位:只),并计算得.
    (1)求样本的相关系数(精确到0.01),并推断这种野生动物的数量y(单位:只)和植物覆盖面积x(单位:公顷)的相关程度;
    (2)已知20个样区中有8个样区的这种野生动物数量低于样本平均数,从20个样区中随机抽取2个,记抽到这种野生动物数量低于样本平均数的样区的个数为X,求随机变量X的分布列.
    附:相关系数
    【题型二】二项分布型分布列
    1.(2024·云南昆明·一模)聊天机器人(chatterbt)是一个经由对话或文字进行交谈的计算机程序.当一个问题输入给聊天机器人时,它会从数据库中检索最贴切的结果进行应答.在对某款聊天机器人进行测试时,如果输入的问题没有语法错误,则应答被采纳的概率为80%,若出现语法错误,则应答被采纳的概率为30%.假设每次输入的问题出现语法错误的概率为10%.
    (1)求一个问题的应答被采纳的概率;
    (2)在某次测试中,输入了8个问题,每个问题的应答是否被采纳相互独立,记这些应答被采纳的个数为,事件()的概率为,求当最大时的值.
    2.(2024·全国·模拟预测)某地文旅部门为了增强游客对本地旅游景区的了解,提高旅游景区的知名度和吸引力,促进旅游业的发展,在2023年中秋国庆双节之际举办“十佳旅游景区”评选活动,在坚持“公平、公正公开”的前提下,经过景区介绍、景区参观、评选投票、结果发布、颁发奖牌等环节,当地的6个“自然景观类景区”和4个“人文景观类景区”荣获“十佳旅游景区”的称号.评选活动结束后,文旅部门为了进一步提升“十佳旅游景区”的影响力和美誉度,拟从这10个景区中选取部分景区进行重点推介.
    (1)若文旅部门从这10个景区中先随机选取1个景区面向本地的大学生群体进行重点推介、再选取另一个景区面向本地的中学生群体进行重点推介,记面向大学生群体重点推介的景区是“自然景观类景区”为事件A,面向中学生群体重点推介的景区是“人文景观类景区”为事件B,求,;
    (2)现需要从“十佳旅游景区”中选4个景区,且每次选1个景区(可以重复),分别向北京、上海、广州、深圳这四个一线城市进行重点推介,记选取的景区中“人文景观类景区”的个数为X,求X的分布列和数学期望.
    3.(2023·广东肇庆·二模)在数字通信中,信号是由数字“0”和“1”组成的序列.现连续发射信号次,每次发射信号“0”和“1”是等可能的.记发射信号1的次数为.
    (1)当时,求
    (2)已知切比雪夫不等式:对于任一随机变量,若其数学期望和方差均存在,则对任意正实数,有.根据该不等式可以对事件“”的概率作出下限估计.为了至少有的把握使发射信号“1”的频率在0.4与0.6之间,试估计信号发射次数的最小值.
    【题型三】正态分布型
    1.从某酒店开车到机场有两条路线,为了解两条路线的通行情况,随机统计了走这两条路线各10次的全程时间(单位:min),数据如下表:
    将路线一和路线二的全程时间的样本平均数分别记为和,样本方差分别记为和.
    (1)求.
    (2)假设路线一的全程时间X服从正态分布,路线二的全程时间Y服从正态分布,分别用作为的估计值.现有甲、乙两人各自从该酒店打车去机场,甲要求路上时间不超过,乙要求路上时间不超过,为尽可能满足客人要求,司机送甲、乙去机场应该分别选哪条路线?
    2.2020年我国科技成果斐然,其中北斗三号全球卫星导航系统7月31日正式开通.北斗三号全球卫星导航系统由24颗中圆地球轨道卫星、3颗地球静止轨道卫星和3颗倾斜地球同步轨道卫星,共30颗卫星组成.北斗三号全球卫星导航系统全球范围定位优于10米,实测的导航定位精度都是2~3米,全球服务可用性99%,亚太地区性能更优.
    (Ⅰ)南美地区某城市通过对1000辆家用汽车进行定位测试,发现定位精确度近似满足,预估该地区某辆家用汽车导航精确度在的概率;
    (Ⅱ)(ⅰ)某地基站工作人员30颗卫星中随机选取4颗卫星进行信号分析,选取的4颗卫星中含3颗倾斜地球同步轨道卫星数记为,求的分布列和数学期望;
    (ⅱ)某日北京、上海、拉萨、巴黎、里约5个基地同时独立随机选取1颗卫星进行信号分析,选取的5颗卫星中含中圆地球轨道卫星的数目记为,求的数学期望.
    附:若,则,,.
    3.据相关部门统计,随着电商网购的快速普及,快递包装业近年来实现了超过的高速年均增长.针对这种大好形式,某化工厂引进了一条年产量为万个包装胶带的生产线.已知该包装胶带的质量以某项指标值作为衡量标准.为估算其经济效益,该化工厂先进行了试生产,并从中随机抽取了个包装胶带,统计了每个包装胶带的质量指标值,并分成以下组:,,…,,其统计结果及产品等级划分如下表所示:
    试利用该样本的频率分布估计总体的概率分布,并解决下列问题(注:每组数据取区间的中点值):
    (1)由频数分布表可认为,该包装胶带的质量指标值近似地服从正态分布,其中近似为样本平均数,近似为样本的标准差,并已求得.求的值;
    (2)已知每个包装胶带的质量指标值与利润(单位:元)的关系如下表所示:()
    假定该化工厂所生产的包装胶带都能销售出去,且这一年的总投资为万元(含引进生产线、兴建厂房等等一切费用在内),问:该化工厂能否在一年之内通过生产包装胶带收回投资?试说明理由.
    参考数据:若随机变量,则,,,.
    江苏省南通市西亭高级中学2020-2021学年高三上学期省模考模拟二数学试题
    【题型四】分布列均值与方差
    1.(2021·江苏泰州·模拟预测)现有一批疫苗试剂,拟进入动物试验阶段,将1000只动物平均分成100组,任选一组进行试验.第一轮注射,对该组的每只动物都注射一次,若检验出该组中有9只或10只动物产生抗体,说明疫苗有效,试验终止;否则对没有产生抗体的动物进行第二轮注射,再次检验.如果被二次注射的动物都产生抗体,说明疫苗有效,否则需要改进疫苗.设每只动物是否产生抗体相互独立,两次注射疫苗互不影响,且产生抗体的概率均为.
    (1)求该组试验只需第一轮注射的概率(用含的多项式表示);
    (2)记该组动物需要注射次数的数学期望为,求证:.
    2.(22-23高二下·福建福州·期末)某疫苗生产单位通过验血的方式检验某种疫苗产生抗体情况,现有份血液样本(数量足够大),有以下两种检验方式:
    方式一:逐份检验,需要检验n次;
    方式二:混合检验,将其中k(且)份血液样本混合检验,若混合血样无抗体,说明这k份血液样本全无抗体,只需检验1次;若混合血样有抗体,为了明确具体哪份血液样本有抗体,需要对每份血液样本再分别化验一次,检验总次数为次.
    假设每份样本的检验结果相互独立,每份样本有抗体的概率均为.
    (1)现有7份不同的血液样本,其中只有3份血液样本有抗体,采用逐份检验方式,求恰好经过4次检验就能把有抗体的血液样本全部检验出来的概率;
    (2)现取其中k(且)份血液样本,记采用逐份检验方式,样本需要检验的总次数为;采用混合检验方式,样本需要检验的总次数为.
    ①若,求P关于k的函数关系式;
    ②已知,以检验总次数的期望为依据,讨论采用何种检验方式更好?
    参考数据:.
    3.(23-24高三上·四川成都·开学考试)在三维空间中,立方体的坐标可用三维坐标表示,其中.而在n维空间中,以单位长度为边长的“立方体”的项点坐标可表示为n维坐标,其中.现有如下定义:在n维空间中两点间的曼哈顿距离为两点与坐标差的绝对值之和,即为.回答下列问题:
    (1)求出n维“立方体”的顶点数;
    (2)在n维“立方体”中任取两个不同顶点,记随机变量X为所取两点间的曼哈顿距离
    ①求出X的分布列与期望;
    ②证明:在n足够大时,随机变量X的方差小于.
    (已知对于正态分布,P随X变化关系可表示为)
    【题型五】竞技比赛型分布列
    1.(2023·山西临汾·模拟预测)魔方,又叫鲁比可方块,最早是由匈牙利布达佩斯建筑学院厄尔诺·鲁比克教授于1974年发明的机械益智玩具.魔方拥有竞速、盲拧、单拧等多种玩法,风靡程度经久未衰,每年都会举办大小赛事,是最受欢迎的智力游戏之一.通常意义下的魔方,是指狭义的三阶魔方.三阶魔方形状通常是正方体,由有弹性的硬塑料制成.常规竞速玩法是将魔方打乱,然后在最短的时间内复原.广义的魔方,指各类可以通过转动打乱和复原的几何体.魔方与华容道、法国的单身贵族(独立钻石棋)并称为智力游戏界的三大不可思议.在2018WCA世界魔方芜湖公开赛上,杜宇生以3.47秒的成绩打破了三阶魔方复原的世界纪录,勇夺世界魔方运动的冠军,并成为世界上第一个三阶魔方速拧进入4秒的选手.
    (1)小王和小吴同学比赛三阶魔方,已知小王每局比赛获胜的概率均为,小吴每局比赛获胜的概率均为,若采用三局两胜制,两人共进行了局比赛,求的分布列和数学期望;
    (2)小王和小吴同学比赛四阶魔方,首局比赛小吴获胜的概率为0.5,若小王本局胜利,则他赢得下一局比赛的概率为0.6,若小王本局失败,则他赢得下一局比赛的概率为0.5,为了赢得比赛,小王应选择“五局三胜制”还是“三局两胜制”?
    2.(2021·山东·模拟预测)国际比赛赛制常见的有两种,一种是单败制,一种是双败制.单败制即每场比赛的失败者直接淘汰,常见的有等等.表示双方进行一局比赛,获胜者晋级.表示双方最多进行三局比赛,若连胜两局,则直接晋级;若前两局两人各胜一局,则需要进行第三局决胜负.现在四人进行乒乓球比赛,比赛赛制采用单败制,A与B一组,C与D一组,第一轮两组分别进行,胜者晋级,败者淘汰;第二轮由上轮的胜者进行,胜者为冠军.已知A与比赛,A的胜率分别为;B与比赛,B的胜率分别;C与D比赛,C的胜率为.任意两局比赛之间均相互独立.
    (1)在C进入第二轮的前提下,求A最终获得冠军的概率;
    (2)记A参加比赛获胜的局数为X,求X的分布列与数学期望.
    3.(23·24高三下·浙江·开学考试)甲、乙、丙三位同学进行乒乓球比赛,约定赛制如下:每场比赛胜者积2分,负者积0分;比赛前根据相关规则决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空;积分首先累计到4分者获得比赛胜利,比赛结束.已知甲与乙比赛时,甲获胜的概率为,甲与丙比赛时,甲获胜的概率为,乙与丙比赛时,乙获胜的概率为.
    (1)若,求比赛结束时,三人总积分的分布列与期望;
    (2)若,假设乙获得了指定首次比赛选手的权利,为获得比赛的胜利,试分析乙的最优指定策略.
    【题型六】多人比赛竞技型分布列
    1.(2023·全国·模拟预测)已知甲、乙、丙三人进行一个项目的比赛.在一轮比赛中,每两人之间均进行一场比赛,且每场比赛均无平局出现,三场比赛结束后,若有人赢得两场比赛,则该人获胜,比赛结束:若三人各赢得一场比赛,则三人继续进行下一轮比赛,以此类推,直至有人在其中一轮比赛中赢得两场比赛,该人获胜,比赛结束.已知甲胜乙、甲胜丙、乙胜丙的概率分别为
    (1)求恰好在两轮比赛后比赛结束的概率;
    (2)设比赛结束时,共进行了轮比赛,且当进行了四轮比赛后仍无人赢得比赛则通过抽签决出胜负,不再进行第五轮比赛,求的分布列及数学期望,
    2.(23·24高三·海南海口·阶段练习)甲、乙两队举行围棋擂台赛,比赛规则如下:两队各出三人参加比赛,并按1,2,3号排定先后出场次序,第一局由双方1号队员出场比赛.每场比赛后,获胜的队员留下继续比赛,告负的队员淘汰出局,由该队下一号队员上场比赛.当某队三名队员都被淘汰出局时比赛结束,有队员未被淘汰的一方获得擂台赛胜利.假设各局比赛相互独立,甲队第m号队员胜乙队第n号队员的概率为下表中第m行、第n列中的数据.
    (1)求甲队2号队员把乙队三名队员都淘汰出局的概率;
    (2)在第三局比赛中,甲队和乙队哪个队获胜的可能性更大?说明你的理由.
    3.(23·24高三·江苏·开学考试)第19届亚运会将于2023年9月23日至10月8日在中国杭州举办.中国田径队拟派出甲、乙、丙三人参加男子100米比赛.比赛分为预赛、半决赛和决赛,只有预赛和半决赛都获得晋级才能进入决赛.已知甲在预赛和半决赛中晋级的概率均为;乙在预赛和半决赛中晋级的概率分别为和;丙在预赛和半决赛中晋级的概率分别为和,其中,甲、乙、丙三人晋级与否互不影响.
    (1)试比较甲、乙、丙三人进入决赛的可能性大小;
    (2)若甲、乙、丙三人都进入决赛的概率为,求三人中进入决赛的人数的分布列和期望.
    【题型七】递推数列型
    1.(23·24高三上·湖北·期中)小明进行投篮训练,已知每次投篮的命中率均为0.5.
    (1)若小明共投篮4次,求在投中2次的条件下,第二次没有投中的概率;
    (2)若小明进行两组训练,第一组投篮3次,投中次,第二组投篮2次,投中次,求;
    (3)记表示小明投篮次,恰有2次投中的概率,记表示小明在投篮不超过n次的情况下,当他投中2次后停止投篮,此时一共投篮的次数(当投篮n次后,若投中的次数不足2次也不再继续投),证明:.
    2.(2022高三·全国·专题练习)投掷一枚硬币(正反等可能),设投掷n次不连续出现三次正面向上的概率为.
    (1)求,,和;
    (2)写出的递推公式,并指出增减性.
    3.(20·21高三·福建福州·期中)一只蚂蚁从正方形的顶点出发,每一次行动顺时针或逆时针经过一条边到达另一顶点,其中顺时针的概率为,逆时针的概率为,设蚂蚁经过步回到点的概率为.
    (1)求,;
    (2)设经过步到达点的概率为,求的值;
    (3)求.
    【题型八】三人传球递推数列型
    1.(22·23高三 ·江苏·)第22届世界杯于2022年11月21日到12月18日在卡塔尔举办.在决赛中,阿根廷队通过点球战胜法国队获得冠军.
    (1)扑点球的难度一般比较大,假设罚点球的球员会等可能地随机选择球门的左、中、右三个方向射门,门将也会等可能地随机选择球门的左、中、右三个方向来扑点球,而且门将即使方向判断正确也有的可能性扑不到球.不考虑其它因素,在一次点球大战中,求门将在前三次扑到点球的个数X的分布列和期望;
    (2)好成绩的取得离不开平时的努力训练,甲、乙、丙三名前锋队员在某次传接球的训练中,球从甲脚下开始,等可能地随机传向另外2人中的1人,接球者接到球后再等可能地随机传向另外2人中的1人,如此不停地传下去,假设传出的球都能接住.记第n次传球之前球在甲脚下的概率为pn,易知.
    ①试证明:为等比数列;
    ②设第n次传球之前球在乙脚下的概率为qn,比较p10与q10的大小.
    2.(22·23高三山东潍坊·阶段练习)学校篮球队30名同学按照1,2,…,30号站成一列做传球投篮练习,篮球首先由1号传出,训练规则要求:第号同学得到球后传给号同学的概率为,传给号同学的概率为,直到传到第29号(投篮练习)或第30号(投篮练习)时,认定一轮训练结束,已知29号同学投篮命中的概率为,30号同学投篮命中的概率为,设传球传到第号的概率为.
    (1)求的值;
    (2)证明:是等比数列;
    (3)比较29号和30号投篮命中的概率大小.
    3.(22·23高三 ·广东·阶段练习)足球是一项大众喜爱的运动.2022卡塔尔世界杯揭幕战将在2022年11月21日打响,决赛定于12月18日晚进行,全程为期28天.
    (1)为了解喜爱足球运动是否与性别有关,随机抽取了男性和女性各100名观众进行调查,得到22列联表如下:
    依据小概率值a=0.001的独立性检验,能否认为喜爱足球运动与性别有关?
    (2)校足球队中的甲、乙、丙、丁四名球员将进行传球训练,第1次由甲将球传出,每次传球时,传球者都等可能的将球传给另外三个人中的任何一人,如此不停地传下去,且假定每次传球都能被接到.记开始传球的人为第1次触球者,第次触球者是甲的概率记为,即.
    (i)求(直接写出结果即可);
    (ii)证明:数列为等比数列,并判断第19次与第20次触球者是甲的概率的大小.
    【题型九】导数计算型分布列最值
    1.(22-23高三浙江)某制药公司研制了一款针对某种病毒的新疫苗.该病毒一般通过病鼠与白鼠之间的接触传染,现有只白鼠,每只白鼠在接触病鼠后被感染的概率为,被感染的白鼠数用随机变量X表示,假设每只白鼠是否被感染之间相互独立
    (1)若,求数学期望;
    (2)接种疫苗后的白鼠被病鼠感染的概率为,现有两个不同的研究团队理论研究发现概率与参数的取值有关.团队A提出函数模型为,团队B提出函数模型为.现将100只接种疫苗后的白鼠分成10组,每组10只,进行实验,随机变量表示第组被感染的白鼠数,将随机变量的实验结果绘制成频数分布图,如图所示.

    (i)试写出事件“”发生的概率表达式(用表示,组合数不必计算);
    (ⅱ)在统计学中,若参数时使得概率最大,称是的最大似然估计.根据这一原理和团队A,B提出的函数模型,判断哪个团队的函数模型可以求出的最大似然估计,并求出最大似然估计.参考数据:.
    2.(22-23高三·福建福州)某疫苗生产单位通过验血的方式检验某种疫苗产生抗体情况,现有份血液样本(数量足够大),有以下两种检验方式:
    方式一:逐份检验,需要检验n次;
    方式二:混合检验,将其中k(且)份血液样本混合检验,若混合血样无抗体,说明这k份血液样本全无抗体,只需检验1次;若混合血样有抗体,为了明确具体哪份血液样本有抗体,需要对每份血液样本再分别化验一次,检验总次数为次.
    假设每份样本的检验结果相互独立,每份样本有抗体的概率均为.
    (1)现有7份不同的血液样本,其中只有3份血液样本有抗体,采用逐份检验方式,求恰好经过4次检验就能把有抗体的血液样本全部检验出来的概率;
    (2)现取其中k(且)份血液样本,记采用逐份检验方式,样本需要检验的总次数为;采用混合检验方式,样本需要检验的总次数为.
    ①若,求P关于k的函数关系式;
    ②已知,以检验总次数的期望为依据,讨论采用何种检验方式更好?
    参考数据:.
    3.(20-21高三 ·重庆沙坪坝·阶段练习)某制药公司研制了一款针对某种病毒的新疫苗.该病毒一般通过病鼠与白鼠之间的接触传染,现有只白鼠,每只白鼠在接触病鼠后被感染的概率为,被感染的白鼠数用随机变量表示,假设每只白鼠是否被感染之间相互独立.
    (1)若,求数学期望;
    (2)接种疫苗后的白鼠被病鼠感染的概率为,现有两个不同的研究团队理论研究发现概率与参数的取值有关.团队提出函数模型为,团队提出函数模型为.现将白鼠分成10组,每组10只,进行实验,随机变量表示第组被感染的白鼠数,现将随机变量的实验结果绘制成频数分布图,如图所示.假设每组白鼠是否被感染之间相互独立.
    ①试写出事件“”发生的概率表达式(用表示,组合数不必计算);
    ②在统计学中,若参数时使得概率最大,称是的最大似然估计.根据这一原理和团队 ,提出的函数模型,判断哪个团队的函数模型可以求出的最大似然估计,并求出估计值.
    参考数据:.
    【题型十】机器人跳棋模式求分布列
    1.(江苏省苏州市2022-2023学年高三下学期2月学业质量调研数学试题)设数轴上有一只兔子,从坐标开始,每秒以的概率向正方向跳一个单位,以的概率向反方向跳一个单位,记兔子第n秒时的位置为.
    (1)证明:;
    (2)记是表达式的最大值,证明:.
    2.某校为了解该校学生“停课不停学”的网络学习效率,随机抽查了高一年级100位学生的某次数学成绩(单位:分),得到如下所示的频率分布直方图:
    (1)估计这100位学生的数学成绩的平均值;(同一组中的数据用该组区间的中点值代表)
    (2)根据整个年级的数学成绩可以认为学生的数学成绩近似地服从正态分布,经计算,(1)中样本的标准差s的近似值为10,用样本平均数作为的近似值,用样本标准差s作为的估计值,现任抽取一位学生,求他的数学成绩恰在64分到94分之间的概率;(若随机变量,则,,)
    (3)该年级1班的数学老师为了能每天督促学生的网络学习,提高学生每天的作业质量及学习数学的积极性,特意在微信上设计了一个每日作业小程序,每当学生提交的作业获得优秀时,就有机会参与一次小程序中”玩游戏,得奖励积分”的活动,开学后可根据获得积分的多少向老师领取相应的小奖品.小程序页面上有一列方格,共15格,刚开始有只小兔子在第1格,每点一下游戏的开始按钮,小兔子就沿着方格跳一下,每次跳1格或跳2格,概率均为,依次点击游戏的开始按钮,直到小兔子跳到第14格(奖励0分)或第15格(奖励5分)时,游戏结束,每天的积分自动累加,设小兔子跳到第格的概率为,试证明是等比数列,并求(获胜的概率)的值.
    江西省景德镇一中2021-2022学年数学试题
    目录
    TOC \ "1-1" \h \u \l "_Tc12894" 【题型一】 超几何分布型分布列 PAGEREF _Tc12894 \h 1
    \l "_Tc32179" 【题型二】二项分布型分布列 PAGEREF _Tc32179 \h 2
    \l "_Tc28654" 【题型三】正态分布型 PAGEREF _Tc28654 \h 3
    \l "_Tc25917" 【题型四】分布列均值与方差 PAGEREF _Tc25917 \h 6
    \l "_Tc1853" 【题型五】竞技比赛型分布列 PAGEREF _Tc1853 \h 8
    \l "_Tc10659" 【题型六】多人比赛竞技型分布列 PAGEREF _Tc10659 \h 9
    \l "_Tc16046" 【题型七】递推数列型 PAGEREF _Tc16046 \h 10
    \l "_Tc2696" 【题型八】三人传球递推数列型 PAGEREF _Tc2696 \h 11
    \l "_Tc18168" 【题型九】导数计算型分布列最值 PAGEREF _Tc18168 \h 13
    \l "_Tc12000" 【题型十】机器人跳棋模式求分布列 PAGEREF _Tc12000 \h 15
    总数为的两类物品,其中一类为件,从中取件恰含中的件, ,其中为与的较小者,,称 服从参数为的超几何分布,记作 ,此时有公式。
    一般地,假设一批产品共有N件,其中有M件次品. 从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为,,,,,. 其中n,N,,,,,. 如果随机变量X的分布列具有上式的形式,那么称随机变量X服从超几何分布_..
    若在一次实验中事件发生的概率为,则在次独立重复实验中恰好发生次概率 ,称服从参数为的二项分布,记作 ,=,.
    (1)若是正态随机变量,其概率密度曲线的函数表达式为 , (其中是参数,且,)。
    其图像如图13-7所示,有以下性质:
    = 1 \* GB3 ①曲线在轴上方,并且关于直线对称;
    = 2 \* GB3 ②曲线在处处于最高点,并且此处向左右两边延伸时,逐渐降低,呈现“中间高,两边低”的形状;
    = 3 \* GB3 ③曲线的形状由确定,越大,曲线越“矮胖”,越小,曲线越“高瘦”;
    = 4 \* GB3 ④图像与轴之间的面积为1.
    (2)= ,= ,记作 .
    当时, 服从标准正态分布,记作 .
    (3) ,则在, ,上取值的概率分别为68.3%,95.4%,99.7%,这叫做正态分布的原则。
    路线一
    44
    58
    66
    50
    34
    42
    50
    38
    62
    56
    路线二
    62
    56
    68
    62
    58
    61
    61
    52
    61
    59
    质量指标值
    产品等级




    废品
    频数
    质量指标值
    利润
    (1)总体方差和标准差:如果总体中所有个体的变量值分别为,总体的平均数为,则称_为总体方差,_为总体标准差.
    (2)总体方差的加权形式:如果总体的N个变量值中,不同的值共有个,不妨记为,其中出现的频数为,则总体方差为_.
    (3)设样本容量为n,平均数为,其中两层的个体数量分别为,两层的平均数分别为,方差分别为,,则这个样本的方差为.
    比赛模式,要考虑:
    比赛几局?
    “谁赢了”;
    有没有平局
    赢了的必赢最后一局;
    比赛为啥结束?
    第1列
    第2列
    第3列
    第1列
    0.5
    0.3
    0.2
    第2列
    0.6
    0.5
    0.3
    第3列
    0.8
    0.7
    0.6
    马尔可夫链:若,即未来状态只受当前状态
    马尔科夫不等式
    设为一个非负随机变量,其数学期望为,则对任意,均有,
    马尔科夫不等式给出了随机变量取值不小于某正数的概率上界,阐释了随机变量尾部取值概率与其数学期望间的关系.
    证明:当为非负离散型随机变量时,马尔科夫不等式的证明如下:
    设的分布列为其中,则对任意,,其中符号表示对所有满足的指标所对应的求和.的影响,与之前的无关.
    多人比赛或者传球模型,一般情况下涉及到独立事件与互斥事件的识别,及概率运算,离散型随机变量的分布列和期望,如果符合常见的二项分布,超几何分布等等分布,直接用概率公式进行运算。如果限制条件较多,可以进行罗列方式进行分类讨论计算
    喜爱足球运动
    不喜爱足球运动
    合计
    男性
    60
    40
    100
    女性
    20
    80
    100
    合计
    80
    120
    200

    相关试卷

    【三轮冲刺】高考数学(大题培优)02 数列综合大题归类:

    这是一份【三轮冲刺】高考数学(大题培优)02 数列综合大题归类,文件包含三轮冲刺高考数学大题培优02数列综合大题归类原卷版docx、三轮冲刺高考数学大题培优02数列综合大题归类解析版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。

    2024年高考数学二轮培优专题 概率与分布列归类(原卷版+含解析):

    这是一份2024年高考数学二轮培优专题 概率与分布列归类(原卷版+含解析),共57页。

    2024年新高考数学二轮培优专题 概率与分布列归类(原卷版+含解析):

    这是一份2024年新高考数学二轮培优专题 概率与分布列归类(原卷版+含解析),共57页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        【三轮冲刺】高考数学(大题培优)03概率与分布列归类
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map