搜索
    上传资料 赚现金
    英语朗读宝

    2024年中考数学复习讲义 第24讲 特殊四边形-菱形(含答案)

    2024年中考数学复习讲义 第24讲 特殊四边形-菱形(含答案)第1页
    2024年中考数学复习讲义 第24讲 特殊四边形-菱形(含答案)第2页
    2024年中考数学复习讲义 第24讲 特殊四边形-菱形(含答案)第3页
    还剩107页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年中考数学复习讲义 第24讲 特殊四边形-菱形(含答案)

    展开

    这是一份2024年中考数学复习讲义 第24讲 特殊四边形-菱形(含答案),共110页。学案主要包含了考情分析,知识建构等内容,欢迎下载使用。
    TOC \ "1-3" \n \h \z \u 一、考情分析
    二、知识建构
    考点一 菱形的性质与判定
    题型01 利用菱形的性质求角度
    题型02 利用菱形的性质求线段长
    题型03 利用菱形的性质求周长
    题型04 利用矩形的性质求面积
    题型05 利用矩形的性质求坐标
    题型06 利用矩形的性质证明
    题型07 添加一个条件证明四边形是菱形
    题型08 证明四边形是菱形
    题型09 根据菱形的性质与判定求角度
    题型10 根据菱形的性质与判定求线段长
    题型11 根据菱形的性质与判定求面积
    题型12 根据菱形的性质与判定解决多结论问题
    题型13 与菱形有关的新定义问题
    题型14 与菱形有关的规律探究问题
    题型15 与菱形有关的动点问题
    题型16 菱形与一次函数综合
    题型17 菱形与反比例函数综合
    题型18 菱形与一次函数、反比例函数综合
    题型19 菱形与二次函数综合
    考点一 菱形的性质与判定
    菱形的定义:有一组邻边相等的平行四边形叫做菱形.
    菱形的性质:
    1)具有平行四边形的所有性质;
    2)四条边都相等;
    3)两条对角线互相垂直,且每条对角线平分一组对角.
    4)菱形既是中心对称图形,又是轴对称图形,菱形的对称中心是菱形对角线的交点,菱形的对称轴是菱形对角线所在的直线,菱形的对称轴过菱形的对称中心.
    菱形的判定:
    1)A
    对角线互相垂直的平行四边形是菱形.
    2)一组邻边相等的平行四边形是菱形.
    3)四条边相等的四边形是菱形.
    【解题思路】判定一个四边形是菱形时,可先说明它是平行四边形,再说明它的一组邻边相等或它的对角线互相垂直,也可直接说明它的四条边都相等或它的对角线互相垂直平分.
    菱形的面积公式:S=ah=对角线乘积的一半(其中a为边长,h为高).
    菱形的周长公式:周长l=4a(其中a为边长).
    1. 对于菱形的定义要注意两点:a.是平行四边形;b.一组邻边相等.
    2. 定义说有一组邻边相等的平行四边形才是菱形,不要错误地理解为有一组邻边相等的四边形是菱形.
    3. 菱形的面积S=对角线乘积的一半,适用于对角线互相垂直的任意四边形的面积的计算.
    4. 在求菱形面积时,要根据图形特点及已知条体灵活选择面积公式来解决问题,
    5. 在利用对角线长求菱形的面积时,要特别注意不要漏掉计算公式中的12 .
    题型01 利用菱形的性质求角度
    【例1】(2022·河北石家庄·校考模拟预测)如图,菱形ABCD中,∠1=15°,则∠D=( )
    A.115°B.150°C.125°D.130°
    【答案】B
    【分析】根据菱形的性质解答即可.
    【详解】解:∵四边形ABCD是菱形,
    ∴∠DAB=2∠1,AB∥DC,
    ∴∠DAB+∠D=180°,
    ∵∠1=15°,
    ∴∠DAB=30°,
    ∴∠D=180°-∠DAB=180°-30°=150°,
    故选:B.
    【点拨】此题考查菱形的性质,关键是根据菱形邻角互补和每一条对角线平分一组对角解答.
    【变式1-1】(2023·陕西西安·一模)如图,将菱形纸片沿着线段AB剪成两个全等的图形,则∠1的度数是( )
    A.40°B.60°C.80°D.100°
    【答案】C
    【分析】根据两直线平行,内错角相等可得出答案.
    【详解】解:∵纸片是菱形
    ∴对边平行且相等
    ∴∠1=80°(两直线平行,内错角相等)
    故选:C.
    【点拨】本题考查了菱形的性质,解题的关键是要知道两直线平行,内错角相等.
    【变式1-2】(2023·浙江嘉兴·统考二模)如图,菱形ABCD中,以点A为圆心,以AB长为半径画弧,分别交BC,CD于点E,F. 若∠EAF=60°,则∠D的度数为 .

    【答案】80°/ 80度
    【分析】证△ABE△ADF(AAS),得∠BAE=∠DAF,设∠B=∠D=x,则∠AEB=∠B=x,∠DAF=∠BAE=180°-2x,再由∠B+∠BAD=180°求出x=80°,即可得出结论.
    【详解】解:∵四边形ABCD是菱形,
    ∴AB=AD=BC=DC,
    由题意得:AB=AE,AD=AF,
    ∴∠AEB=∠B, ∠AFD=∠D,
    ∴∠AEB=∠B=∠AFD=∠D,
    在△ABE和△ADF中,
    ∠AEB=∠AFD∠B=∠DAB=AD
    ∴△ABE≌△ADF (AAS) ,
    ∴∠BAE=∠DAF,
    设∠B=∠D=x,则∠AEB=∠B=x,
    ∴∠DAF=∠BAE=180°-2x,
    ∵四边形ABCD是菱形,
    ∴ AD∥BC
    ∴∠B+ ∠BAD=180°,
    即x+180°-2x+60°+180°-2x=180°,
    解得:x=80°,
    ∴∠D=80°,
    故答案为:80°.
    【点拨】本题考查了菱形的性质,等边三角形的性质,平行线的性质,熟练掌握菱形的性质是解题的关键.
    【变式1-3】(2020·吉林长春·统考二模)如图,菱形ABCD中,AC交BD于O,DE⊥BC于E,连接OE,若∠ABC=124°,则∠OED= 度.
    【答案】28
    【分析】由菱形的性质可得∠ABD=∠CBD=12∠ABC=62°,BO=DO,由直角三角形的性质可求解.
    【详解】解:∵四边形ABCD是菱形,∠ABC=124°,
    ∴∠ABD=∠CBD=12∠ABC=62°,BO=DO,
    ∴∠BDE=28°,
    ∵DE⊥BC,
    ∴OE=OD=OB,∠BDE=28°,
    ∴∠ODE=∠OED=28°,
    故答案为:28.
    【点拨】本题考查了菱形的性质,掌握菱形的性质是解题的关键.
    【变式1-4】(2023·湖南永州·统考一模)如图,菱形ABCD中,∠CBD=75,分别以A、B为圆心,大于AB的一半长为半径画弧,两弧在AB的两侧分别交于点P、Q,作直线PQ交AB于点E,交AD于点F,连接BF,求∠DBF的度数.
    【答案】∠DBF =45°
    【分析】根据菱形的性质,以及垂直平分线的性质,求出∠ABD,∠ABF,再利用角的和差定义即可解决问题.
    【详解】解:∵四边形ABCD是菱形,
    ∴∠CDB=∠ADB=∠ABD=∠CBD=75°,
    ∴∠A=180°-75°-75°=30°,
    由作图可知,EF垂直平分线段AB,
    ∴FA=FB,
    ∴∠FBA=∠A=30°,
    ∴∠DBF=∠ABD-∠ABF=45°.
    【点拨】本题考查了菱形的性质,垂直平分线的性质,等角对角对等边,熟练掌握以上知识是解题的关键.
    题型02 利用菱形的性质求线段长
    【例2】(2022·安徽·合肥38中校考模拟预测)如图在菱形ABCD中,AD=12,对角线AC和BD交于点O,点E,F分别是OD和OC的中点,AE与BF交于点G,则EF的长为 .

    【答案】6
    【分析】根据条件可判断EF为△COD的中位线,则EF=12CD计算即可.
    【详解】∵点E,F分别是OD和OC的中点,
    ∴EF是△COD的中位线,
    ∴EF=12CD,
    ∵四边形ABCD是菱形,
    ∴AD=CD=12,
    ∴EF=12CD=6.
    【点拨】本题主要考查中位线性质和判定,菱形的性质,能够判定中位线并应用性质是解题的关键.
    【变式2-1】(2023·浙江·模拟预测)已知菱形的一个内角为60°,一条对角线的长为43,则另一条对角线的长为 .
    【答案】4或12
    【分析】题中没有指明该对角线是较长的对角线还是较短的对角线,所以应分两种情况进行分析求解.
    【详解】解:如图,菱形ABCD中,∠ABC=60°,
    若AC=43,
    ∵AC⊥BD,∠ABF=12∠ABC=30°,AF=12AC=23,BF=12BD,
    ∴BF=AFtan30°=23×3=6,
    ∴BD=2BF=12;
    若BD=43,
    ∵AC⊥BD,∠ABF=12∠ABC=30°,AF=12AC,BF=12BD=23,
    ∴AF=BF⋅tan30°=2,
    ∴AC=2AF=4;
    故答案为:4或12.
    【点拨】本题考查了菱形的性质和解直角三角形,熟练掌握菱形的性质、灵活应用分类思想是关键.
    【变式2-2】(2022·湖南长沙·校考二模)如图,四边形ABCD是边长为5的菱形,对角线AC,BD的长度分别是一元二次方程x2-2m+1x+8m=0的两实数根,DH是AB边上的高,则DH= .

    【答案】245/445/4.8
    【分析】根据菱形的性质得出AB=5,AC⊥BD,AC=2AO,BD=2BO,求出∠AOB=90°,根据勾股定理得出AO2+BO2=25,根据根与系数的关系得出2AO+2BO=2(m+1),2AO⋅2BO=8m,变形后代入求出m的值,即可得出答案.
    【详解】解:∵四边形ABCD是菱形,
    ∴AB=5,AC⊥BD,AC=2AO,BD=2BO,
    ∴∠AOB=90°,
    ∴AO2+BO2=AB2=52=25,
    ∵对角线AC,BD的长度分别是一元二次方程x2-2(m+1)x+8m=0的两实数根,
    ∴2AO+2BO=2(m+1),2AO⋅2BO=8m,
    ∴AO+BO=m+1,AO⋅BO=2m,
    ∴AO2+BO2=(AO+BO)2-2AO×BO=25,
    ∴(m+1)2-4m=25,
    解得:m1=6,m2=-4,
    ∴当m=-4时,AO⋅BO=-8

    相关学案

    2024年中考数学复习讲义 第25讲 特殊四边形-正方形与梯形(含答案):

    这是一份2024年中考数学复习讲义 第25讲 特殊四边形-正方形与梯形(含答案),共172页。学案主要包含了考情分析,知识建构等内容,欢迎下载使用。

    2024年中考数学复习讲义 第23讲 特殊四边形-矩形(含答案):

    这是一份2024年中考数学复习讲义 第23讲 特殊四边形-矩形(含答案),共134页。学案主要包含了考情分析,知识建构等内容,欢迎下载使用。

    【中考一轮复习】2023年中考数学总复习学案——专题24 特殊四边形(原卷版+解析版):

    这是一份【中考一轮复习】2023年中考数学总复习学案——专题24 特殊四边形(原卷版+解析版),文件包含专题24特殊四边形归纳与讲解解析版docx、专题24特殊四边形归纳与讲解原卷版docx等2份学案配套教学资源,其中学案共44页, 欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map