十年(2014-2023)高考数学真题分项汇编(全国通用)专题23 立体几何解答题(理科)-1
展开题型一:证明平行问题
题型二:证明垂直问题
题型三:求线线角
题型四:求线面角
题型五:求二面角
题型六:求几何题的表面积和体积
题型七:求距离的问题
题型八:根据条件确定点的位置
题型九:立体几何中求最值问题
题型十:立体几何的综合应用
题型一:证明平行问题
(2019·江苏·第16题)
如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.
求证:(1)A1B1∥平面DEC1;
(2)BE⊥C1E.
(2022高考北京卷·第17题)
如图,在三棱柱中,侧面为正方形,平面平面,,M,N分别为,AC的中点.
(1)求证:平面;
(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB与平面BMN所成角的正弦值.
条件①:;
条件②:.
注:如果选择条件①和条件②分别解答,按第一个解答计分.
(2016高考数学山东理科·第17题)
在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O的直径,FB是圆台的一条母线.
(Ⅰ)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC;
(Ⅱ)已知EF=FB=AC= ,AB=BC.求二面角 的余弦值.
题型二:证明垂直问题
(2020江苏高考·第15题)
在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点.
(1)求证:EF∥平面AB1C1;
(2)求证:平面AB1C⊥平面ABB1.
(2018年高考数学江苏卷·第15题)
在平行六面体中,,.
求证:(1);
(2).
如图,在五面体中,点O是矩形的对角线的交点,面是等边三角形,棱且.
(1)证明: 平面;
(2)设,证明:平面.
(2014高考数学江苏·第16题)
如图在三棱锥中, 分别为棱的中点,已知.
求证:(1)直线平面;
(2)平面 平面.
(2015高考数学江苏文理·第16题)
如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.
求证:(1)DE∥平面AA1C1C;
(2)BC1⊥AB1.
(2017年高考数学江苏文理科·第15题)
如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.
求证:(1)EF∥平面ABC;
(2)AD⊥AC.
(2016高考数学江苏文理科·第16题)
如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且 ,.
求证:(1)直线DE平面A1C1F;
(2)平面B1DE⊥平面A1C1F.
(2023年全国乙卷理科·第19题)
如图,在三棱锥中,,,,,BP,AP,BC的中点分别为D,E,O,,点F在AC上,.
(1)证明:平面;
(2)证明:平面平面BEF;
(3)求二面角的正弦值.
题型三:求线线角
(2018年高考数学上海·第17题)
已知圆锥的顶点为P,底面圆心为O,半径为2.
(1)设圆锥的母线长为4,求圆锥的体积;
(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图,求异面直线PM与OB所成的角的大小.
(2015高考数学新课标1理科·第18题)
(2015新课标全国Ⅰ理科)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.
(1)证明:平面AEC⊥平面AFC;
(2)求直线AE与直线CF所成角的余弦值.
将边长为的正方形(及其内部)绕旋转一周形成圆柱,如图,长为,长为,其中与在平面的同侧.
(1)求三棱锥的体积;
(2)求异面直线与所成的角的大小.
(2015高考数学广东理科·第18题)
如图,三角形△PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3,点E是CD的中点,点F、G分别在线段AB、BC上,且AF=2FB,CG=2GB.
(1)证明:PE⊥FG;
(2)求二面角P﹣AD﹣C的正切值;
(3)求直线PA与直线FG所成角的余弦值.
题型四:求线面角
(2021年高考浙江卷·第19题)
如图,在四棱锥中,底面是平行四边形,,M,N分别为的中点,.
(1)证明:;
(2)求直线与平面所成角的正弦值.
(2020年高考课标Ⅱ卷理科·第20题)
如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.
(1)证明:AA1∥MN,且平面A1AMN⊥EB1C1F;
(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.
(2020北京高考·第16题)
如图,在正方体中, E为的中点.
(Ⅰ)求证:平面;
(Ⅱ)求直线与平面所成角的正弦值.
(2019·浙江·第19题)
如图,已知三棱柱,平面平面,,分别是的中点.
(1)证明:;
(2)求直线与平面所成角的余弦值.
(2019·天津·理·第17题)
如图,平面,,.
(Ⅰ)求证:平面;
(Ⅱ)求直线与平面所成角的正弦值;
(Ⅲ)若二面角的余弦值为,求线段的长.
(2023年全国甲卷理科·第18题)
如图,在三棱柱中,底面ABC,,到平面的距离为1.
(1)证明:;
(2)已知与的距离为2,求与平面所成角的正弦值.
(2020年新高考全国卷Ⅱ数学(海南)·第20题)
如图,四棱锥P-ABCD的底面为正方形,PD底面ABCD.设平面PAD与平面PBC的交线为.
(1)证明:平面PDC;
(2)已知PD=AD=1,Q为上的点,QB=,求PB与平面QCD所成角的正弦值.
(2020年浙江省高考数学试卷·第19题)
如图,三棱台ABC—DEF中,平面ACFD⊥平面ABC,∠ACB=∠ACD=45°,DC =2BC.
(I)证明:EF⊥DB;
(II)求DF与面DBC所成角的正弦值.
(2022年高考全国甲卷数学(理)·第18题)
在四棱锥中,底面.
(1)证明:;
(2)求PD与平面所成的角的正弦值.
(2022年浙江省高考数学试题·第19题)
如图,已知和都是直角梯形,,,,,,,二面角的平面角为.设M,N分别为的中点.
(1)证明:;
(2)求直线与平面所成角的正弦值.
(2022年高考全国乙卷数学(理)·第18题)
如图,四面体中,,E为的中点.
(1)证明:平面平面;
(2)设,点F在上,当的面积最小时,求与平面所成的角的正弦值.
(2018年高考数学江苏卷·第25题)
如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点。
(1)求异面直线BP与AC1所成角的余弦值;
(2)求直线CC1与平面AQC1所成角的正弦值
(2018年高考数学浙江卷·第19题)
如图,已知多面体均垂直于平面.
(Ⅰ)求证:平面;
(Ⅱ)求直线与平面所成角的正弦值.
(2018年高考数学课标卷Ⅰ(理)·第18题)
如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.
(1)证明:平面平面;
(2)求与平面所成角的正弦值.
(2014高考数学陕西理科·第19题)
四面体ABCD及其三视图如图所示,过棱AB的中点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H.
(1)证明:四边形EFGH是矩形;
(2)求直线AB与平面EFGH夹角的正弦值.
(2014高考数学福建理科·第17题)
在平面四边形中,,,将沿折起,使得平面平面,如图.
(1)求证:;
(2)若为中点,求直线与平面所成角的正弦值.
(2014高考数学北京理科·第17题)
如图,正方形的边长为,,分别为,的中点,在五棱锥中,为棱的中点,平面与棱,分别交于点,.
(1)求证:;
(2)若底面,且,求直线与平面所成角的大小,并求线段的长.
(2015高考数学新课标2理科·第19题)
如图,长方体中, , , ,点 , 分别在 , 上, .过点 , 的平面 与此长方体的面相交,交线围成一个正方形.
(Ⅰ)在图中画出这个正方形(不必说出画法和理由);
(Ⅱ)求直线与平面 所成角的正弦值.
(2015高考数学上海理科·第19题)
如图,在长方体中,,,、分别是、的中点.证明、、、四点共面,并求直线与平面所成的角的大小.
如图,已知四棱锥P-ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.
(I)证明:CE∥平面PAB;
(II)求直线CE与平面PBC所成角的正弦值
(2016高考数学课标Ⅲ卷理科·第19题)
如图,四棱锥P−ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(Ⅰ)证明MN∥平面PAB;
(Ⅱ)求直线AN与平面PMN所成角的正弦值.
(2016高考数学天津理科·第17题)
如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.
(Ⅰ)求证:EG∥平面ADF;
(Ⅱ)求二面角O−EF−C的正弦值;
(Ⅲ)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值.
(2016高考数学四川理科·第18题)
如图,在四棱锥P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E为棱AD的中点,异面直线PA与CD所成的角为90°.
(I)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;
(II)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.
(2017年高考数学北京理科·第16题)
如图,在四棱锥中,底面为正方形,平面平面,点在线段上,平面,,.
(1)求证:为的中点;
(2)求二面角的大小;
(3)求直线与平面所成角的正弦值.
专题23 立体几何解答题(理科)- 十年(2014-2023)高考数学真题分项汇编(全国通用): 这是一份专题23 立体几何解答题(理科)- 十年(2014-2023)高考数学真题分项汇编(全国通用),文件包含专题23立体几何解答题理科解析版-十年2014-2023高考数学真题分项汇编全国通用docx、专题23立体几何解答题理科学生版-十年2014-2023高考数学真题分项汇编全国通用docx等2份试卷配套教学资源,其中试卷共202页, 欢迎下载使用。
专题22 导数解答题(理科)- 十年(2014-2023)高考数学真题分项汇编(全国通用): 这是一份专题22 导数解答题(理科)- 十年(2014-2023)高考数学真题分项汇编(全国通用),文件包含专题22导数解答题理科解析版-十年2014-2023高考数学真题分项汇编全国通用docx、专题22导数解答题理科学生版-十年2014-2023高考数学真题分项汇编全国通用docx等2份试卷配套教学资源,其中试卷共152页, 欢迎下载使用。
专题04 函数解答题(理科)- 十年(2014-2023)高考数学真题分项汇编(全国通用): 这是一份专题04 函数解答题(理科)- 十年(2014-2023)高考数学真题分项汇编(全国通用),文件包含专题04函数解答题理科解析版-十年2014-2023高考数学真题分项汇编全国通用docx、专题04函数解答题理科学生版-十年2014-2023高考数学真题分项汇编全国通用docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。