搜索
    上传资料 赚现金
    英语朗读宝

    2024年广东省广州市中考三模数学试题(原卷版+解析版)

    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      2024年广东省广州市中考三模数学试题(原卷版).docx
    • 解析
      2024年广东省广州市中考三模数学试题(解析版).docx
    2024年广东省广州市中考三模数学试题(原卷版)第1页
    2024年广东省广州市中考三模数学试题(原卷版)第2页
    2024年广东省广州市中考三模数学试题(原卷版)第3页
    2024年广东省广州市中考三模数学试题(解析版)第1页
    2024年广东省广州市中考三模数学试题(解析版)第2页
    2024年广东省广州市中考三模数学试题(解析版)第3页
    还剩4页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年广东省广州市中考三模数学试题(原卷版+解析版)

    展开

    这是一份2024年广东省广州市中考三模数学试题(原卷版+解析版),文件包含2024年广东省广州市中考三模数学试题原卷版docx、2024年广东省广州市中考三模数学试题解析版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.
    2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.
    如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.
    3.回答填空题时,请将每小题的答案直接填写在答题卡中对应横线上.写在本试卷上无效.
    4.回答解答题时,每题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),
    请将解答过程书写在答题卡中对应的位置上.写在本试卷上无效.
    5.考试结束后,将本试卷和答题卡一并交回.
    第一部分选择题(共30分)
    一、选择题(本大题共10小题,每小题3分,共30分.在每小题的四个选项中,只有一项符合题目要求)
    1. 的相反数是( )
    A. B. C. D.
    【答案】A
    【解析】
    【分析】根据相反数的定义进行求解即可.
    【详解】解:的相反数是,
    故选A.
    【点睛】本题主要考查了求一个数的相反数,熟知只有符号不同的两个数互为相反数,0的相反数是0是解题的关键.
    2. 是第五代移动通信技术,网络理论下载速度可以达到每秒以上.用科学记数法表示1300000是( )
    A. B. C. D.
    【答案】C
    【解析】
    【分析】此题考查了科学记数法的表示方法,科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正整数;当原数的绝对值时,是负整数.
    详解】解:,
    故选:C.
    3. 中国“二十四节气”已被正式列入联合国教科文组织人类非物质文化遗产代表作品录,下列四幅作品分别代表“立春”“谷雨”“白露”“大雪”,其中是中心对称图形的是( )
    A. B.
    C. D.
    【答案】D
    【解析】
    【分析】本题考查了中心对称图形的知识,把一个图形绕某一点旋转后,能够与原图形重合,那么这个图形就叫做中心对称图形,熟练掌握中心对称图形的概念,是解题的关键.
    【详解】解:A、绕某一点旋转后,不能够与原图形重合,故不是中心对称图形,故不符合题意;
    B、绕某一点旋转后,不能够与原图形重合,故不是中心对称图形,故不符合题意;
    C、绕某一点旋转后,不能够与原图形重合,故不是中心对称图形,故不符合题意;
    D、绕某一点旋转后,能够与原图形重合,故是中心对称图形,故符合题意;
    故选:D.
    4. 下列运算,与计算结果相同的是( )
    A. B. C. D.
    【答案】D
    【解析】
    【分析】本题考查同底数幂相乘除、幂的乘方等幂的有关运算及合并同类项.根据同底数幂相乘除、幂的乘方等幂的有关运算及合并同类项分别计算各式子,即可解答.
    【详解】解:,
    A选项:与不是同类项,无法合并,故计算结果与不相同;
    B选项:,故计算结果与不相同;
    C选项:,故计算结果与不相同;
    D选项:故计算结果与相同.
    故选:D
    5. 方程的解是( )
    A. B. C. D.
    【答案】A
    【解析】
    【分析】两边都乘以,化整式方程求解,然后检验即可.
    【详解】,
    两边都乘以,得

    整理,得

    ∴.
    检验:当时,,
    ∴原方程的解为.
    故选A.
    【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出未知数的值后不要忘记检验.
    6. 关于一次函数,下列说法不正确的是( )
    A. 图象不经过第三象限B. y随着x的增大而减小
    C. 图象与x轴交于D. 图象与y轴交于
    【答案】C
    【解析】
    【分析】由,,可得图象经过一、二、四象限,随的增大而减小,再分别求解一次函数与坐标轴的交点坐标,从而可得答案.
    【详解】解:∵,,,
    ∴图象经过一、二、四象限,随的增大而减小,
    故A,B不符合题意;
    当时,,解得,
    ∴图象与x轴交于,故C符合题意;
    当时,,
    ∴图象与y轴交于,故D不符合题意;
    故选C.
    【点睛】本题考查的是一次函数的图象与增减性,一次函数与坐标轴的交点坐标,熟记一次函数的性质是解本题的关键.
    7. 如图为商场某品牌椅子的侧面图,,与地面平行,,则( )

    A. 70°B. 65°C. 60°D. 50°
    【答案】A
    【解析】
    【分析】根据平行得到,再利用外角的性质和对顶角相等,进行求解即可.
    【详解】解:由题意,得:,
    ∴,
    ∵,
    ∴,
    ∴;
    故选A.
    【点睛】本题考查平行线的性质,三角形外角的性质,对顶角.熟练掌握相关性质,是解题的关键.
    8. 港珠澳大桥是世界上最长的跨海大桥,被誉为“现代世界七大奇迹”的超级工程,它是我国从桥梁大国走向桥梁强国的里程碑之作.港珠澳大桥主桥为三座大跨度钢结构斜拉桥,其中九洲航道桥主塔造型取自“风帆”,寓意“扬帆起航”.某校九年学生为了测量该主塔的高度,站在B处看塔顶A,仰角为,然后向后走160米(米),到达C处,此时看塔顶A,仰角为,则该主塔的高度是( )

    A. 80米B. 米C. 160米D. 米
    【答案】B
    【解析】
    【分析】过点A作于点D,先根据三角形的外角性质可得,从而可得米,然后在中,利用锐角三角函数的定义求出的长,即可解答.
    【详解】解:如图,过点A作于点D,

    根据题意得:,
    ∵,
    ∴,
    ∴,
    ∴米,
    在中,米.
    即该主塔的高度是米.
    故选:B
    【点睛】本题考查了解直角三角形的应用——仰角俯角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.
    9. 如图,在四边形中,,,,分别是边,上的动点(含端点,但点不与点重合)点,分别是线段,的中点,若线段的最大值为2.5,则的长为( )
    A. 5B. C. 2.5D. 3
    【答案】D
    【解析】
    【分析】根据三角形的中位线定理,可得EF= DN,DN=2EF=5,利用勾股定理求出AD的长,即得结论.
    【详解】解:∵点E、F分别为DM、MN的中点,
    ∴EF= DN,
    ∵EF最大值为2.5,
    ∴当DN最大,即当N与B重合时,有DN=2EF=5,
    ∴,
    ∴解得AD=3,
    故选:D.
    【点睛】本题考查三角形中位线定理、勾股定理等知识,解题的关键是中位线定理的灵活应用,学会转化的思想.
    10. 已知:中,是中线,点在上,且.则的值为( )
    A. B. C. D.
    【答案】B
    【解析】
    【分析】本题主要考查了相似三角形、等腰三角形的性质、三角形外角与内角的关系等知识点,先利用等腰三角形的性质及外角与内角的关系说明,再判断,利用相似三角形的性质用表示出,最后代入比例可得结论.
    【详解】解:是的中线,






    又,





    故选B.
    第二部分非选择题(共90分)
    二、填空题(本题有6个小题,每小题3分,共18分)
    11. 因式分解:_______________________.
    【答案】
    【解析】
    【分析】先提公因式,再用平方差公式分解.
    【详解】解:
    【点睛】本题考查因式分解,掌握因式分解方法是关键.
    12. 一个袋子中装有4个黑球和个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到白球的概率为,则白球的个数为_______.
    【答案】6
    【解析】
    【分析】本题考查利用概率求个数,根据白球概率求出黑球概率,黑球共有4个,就可以求出球的总数,再减去黑球个数即可解答,熟练掌握简单概率公式是解决问题的关键.
    【详解】解:∵摇匀后随机摸出一个,摸到白球的概率为,
    ∴摸到黑球的概率为,
    ∵袋子中有4个黑球和个白球,
    ∴由简单概率公式可得,解得,
    ∴白球有6个,
    故答案为:6.
    13. 若二次函数的图像经过点,,则__________(选填:﹥,﹤,=)
    【答案】
    【解析】
    【分析】本题考查了二次函数的图象与性质,根据二次函数的对称轴和开口方向,判断所给点到对称轴的距离大小即可求解.
    【详解】解:∵二次函数的对称轴为直线,且图象开口向上,
    又,,,

    故答案为:
    14. 如图,正六边形ABCDEF的边长为2,以顶点A为圆心,AB的长为半径画圆,则图中阴影部分的面积为______.
    【答案】##
    【解析】
    【分析】延长FA交⊙A于G,如图所示:根据六边形ABCDEF是正六边形,AB=2,利用外角和求得∠GAB=,再求出正六边形内角∠FAB=180°-∠GAB=180°-60°=120°, 利用扇形面积公式代入数值计算即可.
    【详解】解:延长FA交⊙A于G,如图所示:
    ∵六边形ABCDEF是正六边形,AB=2,
    ∴∠GAB=,
    ∠FAB=180°-∠GAB=180°-60°=120°,
    ∴,
    故答案为.
    【点睛】本题主要考查扇形面积计算及正多边形的性质,熟练掌握扇形面积计算及正多边形的性质是解题的关键.
    15. 某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中、分别表示去年、今年水费(元)与用水量()之间的关系.小雨家去年用水量为150,若今年用水量与去年相同,水费将比去年多_____元.
    【答案】210.
    【解析】
    【分析】根据函数图象中的数据可以求得时,对应的函数解析式,从而可以求得时对应的函数值,由的的图象可以求得时对应的函数值,从而可以计算出题目中所求问题的答案,本题得以解决.
    【详解】设当时,对应的函数解析式为,
    ,得,
    即当时,对应的函数解析式为,
    当时,,
    由图象可知,去年的水价是(元/),故小雨家去年用水量为150,需要缴费:(元),
    (元),
    即小雨家去年用水量为150,若今年用水量与去年相同,水费将比去年多210元,
    故答案为210.
    【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.
    16. 数学课上,老师让同学们以“矩形的折叠”为主题开展数学活动.如图,小明把矩形沿折叠,使点落在边的点处,其中,且,则矩形的面积为______.
    【答案】80
    【解析】
    【分析】首先根据折叠的性质得到,然后根据同角的余角相等得到,进而得到,设,,则,,根据定理求出,,最后利用矩形面积公式求解即可.
    【详解】解:∵矩形沿折叠,使点C落在边的点F处,
    ∴,
    ∴,
    ∵四边形是矩形,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴设,,则,,
    ∴,
    ∵,
    ∴,
    ∵,,
    ∴,即,
    ∴解得:,负值舍去,
    ∴,,
    ∴矩形面积.
    故答案为:80
    三.解答题(共9小题,满分72分)
    17. 解不等式组,并写出满足条件的正整数解.
    【答案】不等式组的解集为<,正整数解为1,2
    【解析】
    【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
    【详解】解:
    解不等式①,得:x>﹣1,
    解不等式②,得:,
    ∴不等式组的解集为<,
    则不等式组的正整数解为1,2.
    【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    18. 如图,在中,点E,F在对角线上,,求证:.

    【答案】见解析
    【解析】
    【分析】先根据平行四边形的性质得到,,再证明,即可利用证明,即可证明.
    【详解】证明:∵四边形是平行四边形,
    ∴,,

    ∵,
    ∴,
    ∴.
    【点睛】本题主要考查了平行四边形的性质,全等三角形的性质与判定,熟知平行四边形对边相等且平行是解题的关键
    19. 近几年中学生近视的现象越来越严重,为响应国家的号召,某公司推出了如图1所示的护眼灯,其侧面示意图(台灯底座高度忽略不计)如图2所示,其中灯柱BC=18cm,灯臂CD=33cm,灯罩DE=20cm,BC⊥AB,CD,DE分别可以绕点C,D上下调节一定的角度.经使用发现:当∠DCB=140°,且ED∥AB时,台灯光线最佳.求此时点D到桌面AB的距离.(精确到0.1cm,参考数值:sin50°≈0.77,cs50°≈0.64,tan50°≈1.19)
    【答案】点D到桌面AB的距离约为43.4cm
    【解析】
    【分析】根据题意,作出合适的辅助线,然后根据锐角三角函数,即可得到DF的长,再根据FG=CB,即可求得DG的长,从而可以解答本题.
    【详解】解:过点D作DG⊥AB,垂足为G,过点C作CF⊥DG,垂足为F,如图所示,
    ∵CB⊥AB,FG⊥AB,CF⊥FG,
    ∴∠B=∠BGF=∠GFC=90°,
    ∴四边形BCFG为矩形,
    ∴∠BCF=90°,FG=BC=18cm,
    又∵∠DCB=140°,
    ∴∠DCF=50°,
    ∵CD=33cm,∠DFC=90°,
    ∴DF=CD•sin50°≈33×0.77=25.41(cm),
    ∴DG≈25.41+18≈43.4(cm),
    答:点D到桌面AB的距离约为43.4cm.
    【点睛】本题考查的是矩形的判定与性质,解直角三角形的应用,掌握作出适当的辅助线构建直角三角形是解题的关键.
    20. 先化简,再求值:,其中.
    【答案】,
    【解析】
    【分析】先根据分式的混合运算法则化简,然后再将代入计算即可解答.
    【详解】解:

    当时,
    原式.
    【点睛】本题主要考查了分式的基本性质及其运算、分母有理化,正确的化简分式是解答本题的关键.
    21. 中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如下尚不完整的统计图.
    请根据以上信息,解决下列问题:
    (1)本次调查所得数据的众数是________部,中位数是________部;
    (2)扇形统计图中“部”所在扇形的圆心角为________度;
    (3)请将条形统计图补充完整;
    (4)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,请用列表或画树状图的方法求他们恰好选中同一名著的概率.
    【答案】(1)1,2;(2)°;(3)见解析;(4)见解析,
    【解析】
    【分析】(1)先根据调查的总人数,求得2部对应的人数,进而得到本次调查所得数据的众数以及中位数;
    (2)根据扇形圆心角的度数=部分占总体的百分比×360°,即可得到“4部”所在扇形的圆心角;
    (3)根据2部对应的人数,即可将条形统计图补充完整;
    (4)根据列表所得的结果,可判断他们选中同一名著的概率.
    【详解】解:(1)调查的总人数为:10÷25%=40,
    ∴2部对应的人数为40-2-14-10-8=6,
    ∴本次调查所得数据的众数是1部,
    ∵2+14+10=26>21,2+14<20,
    ∴中位数为2部.
    故答案为:1,2
    (2)扇形统计图中“4部”所在扇形的圆心角为:
    故答案为:72°.
    (3)2部对应的人数为:40-2-14-10-8=6人
    补全统计图如图所示.
    (4)将《西游记》、《三国演义》、《水浒传》、《红楼梦》分别记作A,B,C,D,
    画树状图可得:
    由图可知,共有16种等可能结果,其中选中同一名著的有4种,.
    故答案为:.
    【点睛】此题考查了树状图法与列表法求概率,以及条形统计图与扇形统计图的知识.解题时注意:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.一组数据中出现次数最多的数据叫做众数.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)= .
    22. 已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=图象的两个交点.
    (1)求一次函数和反比例函数的解析式;
    (2)求△AOB的面积;
    (3)观察图象,直接写出不等式kx+b﹣>0的解集.
    【答案】(1)反比例函数解析式为y=﹣,一次函数的解析式为y=﹣x﹣2;(2)6;(3)x<﹣4或0<x<2.
    【解析】
    【分析】(1)先把点A的坐标代入反比例函数解析式,即可得到m=﹣8,再把点B的坐标代入反比例函数解析式,即可求出n=2,然后利用待定系数法确定一次函数的解析式;
    (2)先求出直线y=﹣x﹣2与x轴交点C的坐标,然后利用S△AOB=S△AOC+S△BOC进行计算;
    (3)观察函数图象得到当x<﹣4或0<x<2时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集.
    【详解】(1)把A(﹣4,2)代入,得m=2×(﹣4)=﹣8,
    所以反比例函数解析式为,
    把B(n,﹣4)代入,
    得﹣4n=﹣8
    解得n=2,
    把A(﹣4,2)和B(2,﹣4)代入y=kx+b,得: ,解得:,
    所以一次函数的解析式为y=﹣x﹣2;
    (2)y=﹣x﹣2中,令y=0,则x=﹣2,
    即直线y=﹣x﹣2与x轴交于点C(﹣2,0),
    ∴S△AOB=S△AOC+S△BOC=×2×2+×2×4=6;
    (3)由图可得,不等式kx+b−>0的解集为:x<−4或0<x<2.
    【点睛】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式.解决问题的关键是掌握用待定系数法确定一次函数的解析式.
    23. 如图,在单位长度为1的网格中,点O,A,B均在格点上,,,以O为圆心,为半径画圆,请按下列步骤完成作图,并回答问题:
    ①过点A作切线,且(点C在A的上方);
    ②连接,交于点D;
    ③连接,与交于点E.
    (1)求证:为的切线;
    (2)求的长度.
    【答案】(1)画图见解析,证明见解析
    (2)
    【解析】
    【分析】(1)根据题意作图,首先根据勾股定理得到,然后证明出,得到,即可证明出为的切线;
    (2)首先根据全等三角形的性质得到,然后证明出,利用相似三角形的性质求解即可.
    【小问1详解】
    如图所示,
    ∵是的切线,
    ∴,
    ∵,,
    ∴,
    ∵,,
    ∴,
    ∴,
    又∵,,
    ∴,
    ∴,
    ∴,
    ∵点D在上,
    ∴为的切线;
    【小问2详解】
    ∵,
    ∴,
    ∵,,
    ∴,
    ∴,即,
    ∴解得.
    【点睛】此题考查了格点作图,圆切线的性质和判定,全等三角形的性质和判定,相似三角形的性质和判定等知识,解题的关键是熟练掌握以上知识点.
    24. 已知二次函数的图像经过两点.
    (1)求b的值.
    (2)当时,该函数的图像的顶点的纵坐标的最小值是________.
    (3)设是该函数的图像与x轴的一个公共点,当时,结合函数的图像,直接写出a的取值范围.
    【答案】(1);(2)1;(3)或.
    【解析】
    【分析】(1)将点代入求解即可得;
    (2)先求出二次函数的顶点的纵坐标,再利用完全平方公式、不等式的性质求解即可得;
    (3)分和两种情况,再画出函数图象,结合图象建立不等式组,解不等式组即可得.
    【详解】解:(1)将点代入得:,
    两式相减得:,
    解得;
    (2)由题意得:,
    由(1)得:,
    则此函数的顶点的纵坐标为,
    将点代入得:,
    解得,
    则,
    下面证明对于任意的两个正数,都有,

    (当且仅当时,等号成立),
    当时,,
    则(当且仅当,即时,等号成立),
    即,
    故当时,该函数的图像的顶点的纵坐标的最小值是1;
    (3)由得:,
    则二次函数的解析式为,
    由题意,分以下两种情况:
    ①如图,当时,则当时,;当时,,
    即,
    解得;
    ②如图,当时,
    当时,,
    当时,,
    解得,
    综上,的取值范围为或.
    【点睛】本题考查了二次函数的图象与性质等知识点,较难的是题(3),熟练掌握函数图象法是解题关键.
    25. 如图(1),已知点G在正方形ABCD对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.
    (1)证明与推断:
    ①求证:四边形CEGF是正方形;
    ②推断:的值为 :
    (2)探究与证明:
    将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:
    (3)拓展与运用:
    正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2,则BC= .
    【答案】(1)①四边形CEGF是正方形;②;(2)线段AG与BE之间的数量关系为AG=BE;(3)3
    【解析】
    【分析】(1)①由、结合可得四边形CEGF是矩形,再由即可得证;
    ②由正方形性质知、,据此可得、,利用平行线分线段成比例定理可得;
    (2)连接CG,只需证∽即可得;
    (3)证∽得,设,知,由得、、,由可得a的值.
    【详解】(1)①∵四边形ABCD是正方形,
    ∴∠BCD=90°,∠BCA=45°,
    ∵GE⊥BC、GF⊥CD,
    ∴∠CEG=∠CFG=∠ECF=90°,
    ∴四边形CEGF是矩形,∠CGE=∠ECG=45°,
    ∴EG=EC,
    ∴四边形CEGF是正方形;
    ②由①知四边形CEGF是正方形,
    ∴∠CEG=∠B=90°,∠ECG=45°,
    ∴,GE∥AB,
    ∴,
    故答案为;
    (2)连接CG,
    由旋转性质知∠BCE=∠ACG=α,
    在Rt△CEG和Rt△CBA中,
    =、=,
    ∴=,
    ∴△ACG∽△BCE,
    ∴,
    ∴线段AG与BE之间的数量关系为AG=BE;
    (3)∵∠CEF=45°,点B、E、F三点共线,
    ∴∠BEC=135°,
    ∵△ACG∽△BCE,
    ∴∠AGC=∠BEC=135°,
    ∴∠AGH=∠CAH=45°,
    ∵∠CHA=∠AHG,
    ∴△AHG∽△CHA,
    ∴,
    设BC=CD=AD=a,则AC=a,
    则由得,
    ∴AH=a,
    则DH=AD﹣AH=a,CH==a,
    ∴由得,
    解得:a=3,即BC=3,
    故答案为3.
    【点睛】本题考查了正方形的性质与判定,相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握正方形的判定与性质、相似三角形的判定与性质是解题的关键.

    相关试卷

    2024年广东省广州市荔湾区中考一模数学试题(原卷版+解析版):

    这是一份2024年广东省广州市荔湾区中考一模数学试题(原卷版+解析版),文件包含2024年广东省广州市荔湾区中考一模数学试题原卷版docx、2024年广东省广州市荔湾区中考一模数学试题解析版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。

    2024年广东省广州市番禺区中考一模数学试题(原卷版+解析版):

    这是一份2024年广东省广州市番禺区中考一模数学试题(原卷版+解析版),文件包含2024年广东省广州市番禺区中考一模数学试题原卷版docx、2024年广东省广州市番禺区中考一模数学试题解析版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。

    2024年广东省广州市越秀区中考一模数学试题(原卷版+解析版):

    这是一份2024年广东省广州市越秀区中考一模数学试题(原卷版+解析版),文件包含2024年广东省广州市越秀区中考一模数学试题原卷版docx、2024年广东省广州市越秀区中考一模数学试题解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map