终身会员
搜索
    上传资料 赚现金

    人教版八年级数学下册举一反三系列专题21.6期末专项复习之数据的分析十六大必考点(原卷版+解析)

    立即下载
    加入资料篮
    人教版八年级数学下册举一反三系列专题21.6期末专项复习之数据的分析十六大必考点(原卷版+解析)第1页
    人教版八年级数学下册举一反三系列专题21.6期末专项复习之数据的分析十六大必考点(原卷版+解析)第2页
    人教版八年级数学下册举一反三系列专题21.6期末专项复习之数据的分析十六大必考点(原卷版+解析)第3页
    还剩50页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版八年级数学下册举一反三系列专题21.6期末专项复习之数据的分析十六大必考点(原卷版+解析)

    展开

    这是一份人教版八年级数学下册举一反三系列专题21.6期末专项复习之数据的分析十六大必考点(原卷版+解析),共53页。


    专题21.6 数据的分析十六大必考点【人教版】TOC \o "1-3" \h \u  HYPERLINK \l "_Toc1318" 【考点1 求一组数据的平均数】  PAGEREF _Toc1318 \h 1 HYPERLINK \l "_Toc32195" 【考点2 利用平均数求未知数据的值】  PAGEREF _Toc32195 \h 2 HYPERLINK \l "_Toc31952" 【考点3 利用已知的平均数求相关数据的平均数】  PAGEREF _Toc31952 \h 2 HYPERLINK \l "_Toc29802" 【考点4 运用平均数做决策】  PAGEREF _Toc29802 \h 3 HYPERLINK \l "_Toc24843" 【考点5 求加权平均数】  PAGEREF _Toc24843 \h 4 HYPERLINK \l "_Toc19406" 【考点6 利用加权平均数求未知数据的值】  PAGEREF _Toc19406 \h 4 HYPERLINK \l "_Toc14530" 【考点7 运用加权平均数做决策】  PAGEREF _Toc14530 \h 5 HYPERLINK \l "_Toc27803" 【考点8 求中位数】  PAGEREF _Toc27803 \h 7 HYPERLINK \l "_Toc6557" 【考点9 利用中位数求未知数据的值】  PAGEREF _Toc6557 \h 8 HYPERLINK \l "_Toc20193" 【考点10 运用中位数做决策】  PAGEREF _Toc20193 \h 8 HYPERLINK \l "_Toc30825" 【考点11 求众数】  PAGEREF _Toc30825 \h 11 HYPERLINK \l "_Toc25930" 【考点12 利用众数求未知数据的值】  PAGEREF _Toc25930 \h 11 HYPERLINK \l "_Toc20975" 【考点13 运用众数做决策】  PAGEREF _Toc20975 \h 12 HYPERLINK \l "_Toc25369" 【考点14 求方差或标准差】  PAGEREF _Toc25369 \h 13 HYPERLINK \l "_Toc6013" 【考点15 利用方差求未知数据的值】  PAGEREF _Toc6013 \h 15 HYPERLINK \l "_Toc15128" 【考点16 利用方差做决策】  PAGEREF _Toc15128 \h 15【考点1 求一组数据的平均数】【例1】(2022秋·山东烟台·八年级统考期中)某排球队6名上场队员的身高(单位:cm)是:180,184,188,190,192,194,现用一名身高为186cm的队员换下场上身高为192cm的队员,与换人前相比,场上队员的身高平均数(         )A.变大 B.变小 C.不变 D.都有可能【变式1-1】(2022秋·全国·七年级期中)某校规定英语竞赛成绩85分以上为优秀,老师将85分记为0,并将一组5名同学的成绩简记为−3,+14,0,+5,−6,这5名同学的平均成绩是(    )A.83 B.87 C.82 D.84【变式1-2】(2022春·山东滨州·八年级统考期中)小明这学期第一次数学考试得了72分,第二次数学考试得了86分,为了达到三次考试的平均成绩不少于80分的目标,他第三次数学考试至少得____分.【变式1-3】(2022春·河南南阳·七年级统考期中)在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则(  )A.y>z>x B.x>z>y C.y>x>z D.z>y>x【考点2 利用平均数求未知数据的值】【例2】(2022春·天津南开·八年级统考期末)为监测某河道水质,进行了6次水质检测,绘制了如图的氨氮含量的折线统计图.若这6次水质检测氨氮含量平均数为1.5 mg/L,则第3次检测得到的氨氮含量是________ mg/L.【变式2-1】(2022秋·河北石家庄·九年级统考期中)一组数据2,3,4,x,6的平均数是4,则x是_______.【变式2-2】(2022春·陕西渭南·八年级统考期末)某校5个环保小队参加植树活动,平均每组植树10棵,已知第一、二、三、五组分别植树9棵、12棵、9棵、8棵,则第四小组植树(   )A.7棵 B.9棵 C.10棵 D.12棵【变式2-3】(2022秋·湖南永州·七年级统考期末)10个人围成一圈做游戏,游戏的规则是:每个人心里都想一个数,并把自己想的数告诉与他相邻的两个人,然后每个人将与他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报出来的数是5的人心里想的数是(    ).A.−10 B.10 C.−8 D.8【考点3 利用已知的平均数求相关数据的平均数】【例3】(2022春·广西南宁·八年级统考期末)将一组数据中的每一个数减去50后,所得新的一组数据的平均数是2,则原来那组数据的平均数是(  )A.50 B.52 C.48 D.2【变式3-1】(2022春·江苏南通·八年级统考期中)已知x1,x2,…,x10 的平均数是a;x11,x12,…,x30的平均数是b,则x1,x2,…,x30的平均数是_________.【变式3-2】(2022春·广西河池·八年级统考期末)一次数学测验满分是100分,全班38名学生平均分是67分.如果去掉A、B、C、D、E五人的成绩,其余人的平均分是62分,那么在这次测验中,C的成绩是_____分.【变式3-3】(2022春·河南商丘·八年级统考期末)已知一组数据x1,x2,…,xn的平均数是﹣2,则数据3x1+2,3x2+2,…,3xn+2的平均数是_____.【考点4 运用平均数做决策】【例4】(2022春·广东河源·八年级校考期末)某商店在一段时间内销售了某种女鞋30双,各种尺码的销售量如表所示,如果鞋店要购进100双这种女鞋,那么购进24厘米、24.5厘米和25厘米三种女鞋数量之和最合适的是(    )A.20双 B.33双 C.50双 D.80双【变式4-1】(2022春·山东临沂·八年级统考期末)今年是三年禁毒“大扫除”攻坚克难之年.为了让学生认识毒品的危害,某校举办了禁毒知识比赛,小红所在班级学生的平均成绩是80分,小星所在班级学生的平均成绩是85分,在不知道小红和小星成绩的情况下,下列说法比较合理的是(    )A.小红的分数比小星的分数低 B.小红的分数比小星的分数高C.小红的分数与小星的分数相同 D.小红的分数可能比小星的分数高【变式4-2】(2022春·北京海淀·九年级统考期末)在一次飞镖比赛中,甲、乙两位选手各扔10次飞镖,下图记录了他们的比赛结果.你认为两人中技术更好的是__________,你的理由是_____________________________.【变式4-3】(2022春·河北·八年级统考期末)某学习小组有15人参加捐款,其中小明的捐款数比15人捐款的平均数多2元,据此可知,下列说法错误的是(  )A.小明的捐款数不可能最少B.小明的捐款数可能最多C.将捐款数按从少到多排列,小明的捐款数一定比第8名多D.将捐款数按从少到多排列,小明的捐款数可能排在第14位【考点5 求加权平均数】【例5】(2022春·浙江·八年级期中)小明参加校园歌手比赛80分,音乐知识100分,综合知识90分,学校按唱功:音乐知识:综合知识6:2:2的比例计算总成绩为,小明的总成绩是(  )A.86 B.88 C.87 D.93【变式5-1】(2022秋·山东淄博·八年级统考期中)某校评选先进班集体,从“学校”、“卫生”、“纪律”、“活动参与”四个方面考核打分,各项满分100分,所占比例如下表:八年级2班这四项得分依次为80,90,84,70,则该班四项综合得分(满分100)为( )A.81.5分 B.82.5分 C.84分 D.86分【变式5-2】(2022春·上海闵行·九年级校考期中)某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是(    )A.3次 B.3.5次 C.4次 D.4.5次【变式5-3】(2022春·浙江·八年级期中)甲、乙、丙三种糖果的售价分别为每千克6元、每千克7元、每千克8元,若将甲种糖果6千克,乙种糖果10千克,丙种糖果4千克混合在一起,则混合后的糖果的售价应定为每千克______元.【考点6 利用加权平均数求未知数据的值】【例6】(2022春·宁夏吴忠·八年级统考期末)下表是某学习小组一次数学测验的成绩统计表:已知该小组本次数学测验的平均分是85分,则x=_____.【变式6-1】(2022春·内蒙古呼和浩特·八年级统考期末)某班有50名学生,平均身高为166cm,其中20名女生的平均身高为163cm,则30名男生的平均身高为_____cm.【变式6-2】(2022春·北京朝阳·八年级校考期中)一位求职者参加某公司的招聘,面试和笔试的成绩分别是86和90,公司给出他这两项测试的平均成绩为87.6,可知此次招聘中_____(填“面试”或“笔试”)的权重较大.【变式6-3】(2022春·广东广州·八年级校考期中)小青在本学期的数学成绩如下表所示(成绩均取整数):(1)计算小青本学期的平时平均成绩;(2)如果学期的总评成绩是根据图所示的权重计算,那么本学期小青的期末考试成绩x至少为多少分才能保证达到总评成绩90分的最低目标?【考点7 运用加权平均数做决策】【例7】(2022春·浙江宁波·八年级校考期中)浙江某大学部分专业采用“三位一体”的形式进行招生,现有甲、乙两名学生,他们各自的三类成绩(已折算成满分100分)如表所示:(1)如果根据三项得分的平均数,那么哪位同学排名靠前?(2)“三位一体”根据入围考生志愿,按综合成绩从高分到低分择优录取,综合成绩按“学业水平测试成绩×20%+综合测试成绩×20%+高考成绩×60%”计算形成,那么哪位同学排名靠前?【变式7-1】(2022春·福建厦门·九年级福建省厦门第六中学校考期中)花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天买不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n是自然数)的函数解析式;(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理如下:①花店在这100天每天均购进16枝玫瑰,求这100天的平均日利润;②花店依据这100天记录的日需求量,计划后续每天购进17枝玫瑰.从盈利的角度分析,你认为花店的决策是否正确?【变式7-2】(2022春·浙江·八年级统考期中)某校举办“社会主义核心价值观”知识演讲比赛,8(1)班计划从甲、乙两位同学中选出一位参加学校的决赛,已知这两位在预赛中各项成绩如表图,且甲、乙两人预赛四项成绩的平均分相同.(1)表中m的值为_________;(2)把图中的统计图补充完整;(3)若将演讲内容、语言表达、形象风度、现场效果四项得分按4∶3∶1∶2的比例确定两人的最终得分,并选择最终得分较高的同学作为代表参赛,那么谁将代表八(1)班参赛?请说明理由【变式7-3】(2022春·甘肃金昌·八年级校考期中)某次歌咏比赛,前三名选手的成绩统计如下:(单位:分)将唱功、音乐常识综合知识三项测试成绩按6:3:1的加权平均分排出冠军、亚军季军,则冠军、亚军、季军各是谁?【考点8 求中位数】【例8】(2022春·江苏宿迁·九年级泗阳致远中学校考期中)已知一组数据:1、2、3、1、5,这组数据的中位数是(    )A.1 B.2 C.3 D.5【变式8-1】(2022春·浙江杭州·八年级校考期中)已知5个正数a1,a2,a3,a4,a5的平均数是a,且a1>a2>a3>a4>a5,则数据:a1,a2,a3,0,a4,a5的平均数和中位数是(    )A.a,a3 B.a,a3+a42C.56a,a2+a42 D.56a,a3+a42【变式8-2】(2022秋·广东茂名·八年级茂名市第一中学校考期中)为了解同学们的阅读情况,八年级(2)班的小李同学随机抽取了30名学生每人一年读课外书本数的登记情况,并绘制统计表如下:则这30个样本数据的中位数是(    )A.4 B.5 C.7 D.10【变式8-3】(2022春·浙江杭州·八年级期中)某班五个兴趣小组的人数分别为4,4,5,x,6.已知这组数据的平均数是5,则这组数据的中位数是(    )A.5 B.4 C.3 D.2【考点9 利用中位数求未知数据的值】【例9】(2022秋·山东烟台·八年级统考期中)当五个整数从小到大排列,中位数为8,若这组数中的唯一众数为10,则这5个整数的和最大可能是(  )A.39 B.40 C.41 D.42【变式9-1】(2022春·浙江杭州·八年级校联考期中)一组数据为1,3,5,12,x,其中整数x是这组数据的中位数,则该组数据的平均数可能是(  )A.4 B.5 C.6 D.7【变式9-2】(2022春·江西赣州·九年级统考期中)某篮球队10名队员的年龄结构如表,已知该队队员年龄的中位数为21.5,则众数与平均数分别为( )A.22,21 B.21,22 C.22,23 D.21,24【变式9-3】(2022秋·山东东营·八年级校联考期中)有甲乙两个箱子,其中甲箱内有98颗球,分别标记号码1~98,且号码不重复的整数,乙箱内没有球.已知某同学从甲箱内拿出49颗球放入乙箱后,乙箱内球的号码的中位数为40.若此时甲箱内有a颗球的号码小于40,有b颗球的号码大于40,则关于a,b的值,下列选项正确的是(    )A.a=15 B.a=16 C.b=24 D.b=35【考点10 运用中位数做决策】【例10】(2022秋·山东青岛·八年级统考期中)学校运动会上,共有15名同学参加了男子100米预赛,参赛选手要想知道自己是否能进入前8名,从而取得决赛资格,只需要了解自己的成绩以及全部成绩的______.【变式10-1】(2022春·山东临沂·八年级统考期末)在某次体育测试中,甲、乙两班成绩的平均数、中位数、方差如下表所示,规定学生个人成绩大于90分为优秀,则甲、乙两班中优秀人数更多的是__________班.【变式10-2】(2022秋·安徽·九年级校联考期中)2022年6月5日上午10点44分,神舟十四号载人飞船发射成功,中国载人航天与空间站建设迎来全新的发展阶段.某中学为了解本校学生对我国航天科技及空间站的知晓情况,在全校开展了“航天梦科普知识”竞赛活动.该活动主要负责人从八、九年级各随机抽取了40名学生的成绩整理分析(满分为100分,得分均为整数,两个年级成绩分组相同)得到以下信息:信息一:八年级学生成绩的频数分布表和九年级学生成绩的扇形统计图如下:八年级学生成绩的频数分布表:信息二:成绩在B组的学生中,九年级比八年级少2人;信息三:八年级C组10名学生的成绩是:70,72,73,73,74,75,75,76,78,79.根据以上信息,完成下列问题:(1)八年级成绩在B组的有   人;(2)该校八年级学生有560人,九年级学生有600人.若成绩在80分以上为优秀,请你估计八、九年级竞赛成绩为优秀的学生总人数;(3)在此次调查中,小雪的成绩是77分,被评为“中上水平”.请你判断小雪属于哪个年级,并说明理由.【变式10-3】(2022秋·广西贵港·九年级统考期中)某校为了解学生的体质健康状况,从八年级和九年级中各随机抽取10名学生进行了体质健康测试,测试成绩如下:八年级:70,81,75,91,69,86,75,81,75,80.九年级:56,78,80,94,78,90,81,78,81,80.整理数据:分析数据:根据上述数据回答以下问题:(1)请直接写出表格中a,b,m,n的值;(2)比较这两组样本数据的平均数、中位数和众数,你认为哪个年级学生的体质健康状况比较好请说明理由?(3)若八年级共有300名学生,请估计八年级体质健康测试成绩在80分以上(含80分)的学生人数.【考点11 求众数】【例11】(2022春·山东济南·八年级统考期末)一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖)则被遮盖的两个数据依次是(    )A.80,2 B.81,2 C.80,80 D.81,80【变式11-1】(2022春·广东河源·八年级校考期末)数据 2,4,3,4,5,3,4 的众数是(    )A.5 B.4 C.3 D.2【变式11-2】(2022秋·陕西西安·八年级西安市铁一中学校考期末)已知10名初中毕业生的中考体育考试成绩如下:57分,56分,67分,67分,56分,56分,58分,59分,60分,57分,这些成绩的众数是(    )A.56分 B.57分 C.56.5分 D.60分【变式11-3】(2022春·陕西安康·八年级统考期末)每年的4月23日为“世界读书日”,某学校为了鼓励学生多读书,开展了“书香校园”的活动.如图是初三某班班长统计的全班50名学生一学期课外图书的阅读量(单位:本),则这50名学生图书阅读数量的中位数,众数和平均数分别是(  )A.18,12,12 B.12,12,12 C.15,12,14.8 D.15,10,14.5【考点12 利用众数求未知数据的值】【例12】(2022秋·山东烟台·八年级统考期末)一组数据由5个整数组成,已知中位数是10,唯一众数是12,则这组数据和的最大值可能是(   )A.50 B.51 C.52 D.53【变式12-1】(2022春·福建泉州·八年级统考期末)已知一组数据2、x、7、3、5、3、2的众数是2,则这组数据的中位数是(  )A.2 B.2.5 C.3 D.5【变式12-2】(2022春·广东珠海·八年级校考期中)某班6位学生引体向上的个数分别为:3,4,4,x,7,7,若这组数据有两个众数,则x的值可以为(  )A.3 B.4 C.7 D.8【变式12-3】(2022春·浙江宁波·八年级校考期中)某班一次数学竞赛考试成绩如下表所示,已知全班共有38人,且众数为60分,中位数为70分,则x2-2y=_________.【考点13 运用众数做决策】【例13】(2022春·湖南长沙·八年级长沙麓山国际实验学校校考期中)东门某商场试销一种新款衬衫,一周内销售情况如下表所示:商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是________.(填“平均数”或“中位数”或“众数”)【变式13-1】(2022秋·辽宁沈阳·八年级统考期末)某商店销售5种领口大小(单位:cm)分别为38,39,40,41,42的村衫.为了调查各种领口大小村衫的销售情况,商店统计了某天的销售情况,并绘制了如图所示的扇形统计图,则该商店应将领口大小为____cm的衬衫进的最少.【变式13-2】(2022春·浙江温州·八年级校联考期中)国家实施“双减”政策后,学生学业负担有所减轻,很多家长选择利用周末时间带孩子去景区游玩.某调查小组从去过乐清雁荡山和江心屿的学生中各随机抽取了20名学生对这两个景区分别进行评分(满分10分),并通过整理和分析,给出了部分信息.乐清雁荡山景区得分情况:7,8,7,10,7,6,9,9,10,10,8,9,8,6,6,10,9,7,9,9.江心屿得分情况:7,8,7,6,7,6,9,9,10,10,8,8,8,6,6,10,8,7,8,8.抽取的学生对两个景区分别打分的平均数、众数和中位数如下表:根据以上信息,解答下列问题:(1)直接写出上述图表中的a,b的值a=______,b=______;(2)根据上述数据,你认为去过这两个景区的学生对哪个景区评价更高?说明理由(写出一条理由即可).【变式13-3】(2022春·浙江温州·八年级瑞安市安阳实验中学校考期中)某校举行“美丽温州”知识竞猜比赛,每班各派五名同学参加,其中八(1)班和八(2)班五位参赛同学的成绩如下表所示(满分为100分):(1)根据上表填空:(2)分别从平均数,中位数,众数的角度进行分析,请你评价这两支参赛队伍的成绩.【考点14 求方差或标准差】【例14】(2022秋·山东东营·八年级统考期中)已知样本x1,x2,x3,…,xn的方差是1,那么样本2x1+3,2x2+3,2x3+3,…,2xn+3的方差是(  )A.1 B.2 C.3 D.4【变式14-1】(2022秋·山东淄博·九年级统考期中)如图是甲、乙两人6次投篮测试(每次投篮10个)成绩的统计图,甲、乙两人测试成绩方差分别记作S甲2,S乙2,则下列结论正确的是(        )A.s甲2s乙2 C.s甲2=s乙2 D.无法确定【变式14-2】(2022春·浙江温州·八年级统考期中)已知数据x1,x2,⋯,xn的平均数是2,方差是0.1,则4x1−2,4x2−2,⋯,4xn−2的平均数和标准差分别为(    )A.2,1.6 B.2, 2105 C.6,0.4 D.6,2105【变式14-3】(2022秋·山东淄博·八年级统考期中)一城市准备选购一千株高度大约为2m的某种风景树来进行街道绿化,有四个苗圃生产基地投标(单株树的价格都一样).采购小组从四个苗圃中都任意抽查了20株树苗的高度,得到的数据如下:请你帮采购小组出谋划策,应选购(   )A.甲苗圃的树苗 B.乙苗圃的树苗; C.丙苗圃的树苗 D.丁苗圃的树苗【考点15 利用方差求未知数据的值】【例15】(2022秋·山东威海·八年级校联考期中)若一组数据13,14,15,16,x的方差比另一组数3,4,5,6,7的方差大,则x的值可能是(   )A.12 B.16 C.17 D.18【变式15-1】(2022秋·河北邯郸·九年级统考期中)佳佳同学5次上学途中所花时间(单位:min)x,y,10,11,9.已知这组数据的平均数为10,方差为2,则x2+y2的值为(    )A.192 B.200 C.208 D.400【变式15-2】(2022秋·山东淄博·八年级统考期中)小丽计算数据方差时,使用公式S2=15(5−x)2+(8−x)2+(13−x)2+(14−x)2+(15−x)2,则公式中x=__.【变式15-3】(2022秋·山东淄博·八年级统考期中)已知2,3,5,m,n五个数据的方差是2,那么3,4,6,m+1,n+1五个数据的方差是______.【考点16 利用方差做决策】【例16】(2022春·浙江·八年级期中)王老师为了选拔一名学生参加数学比赛,对两名备赛选手进行了10次测验,成绩如下(单位:分):甲:5,6,6,6,6,6,7,9,9,10乙:5,6,6,6,7,7,7,7,9,10(1)以上成绩统计分析表中a=_______,b=________,c=______;(2)d______2.6(填“>”、<或“=”):(3)根据以上信息,你认为王老师应该选哪位同学参加比赛,请说明理由.【变式16-1】(2022春·浙江杭州·八年级校考期中)八(1)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲、乙两组,进行了四次“五水共治”模拟竞赛,将成绩优秀的人数和优秀率分别绘制成如图的统计图.根据统计图,回答下列问题:(1)求第三次模拟竞赛成绩的优秀率和乙组在第四次模拟竞赛中成绩优秀的人数.(2)已求得甲组成绩优秀人数的平均数x甲组=7,方差s甲组2=1.5,请通过计算说明,哪一组成绩优秀的人数较稳定?【变式16-2】(2022秋·江苏扬州·九年级统考期中)为了加强心理健康教育,某校组织七年级(1)(2)两班学生进行了心理健康常识测试(分数为整数,满分为10分),已知两班学生人数相同,根据测试成绩绘制了如下所示的统计图.(1)填好表格中所缺的数据:(2)从表中选择合适的统计量,说明哪个班的成绩更均匀.【变式16-3】(2022秋·河北唐山·九年级统考期中)小明、小兵参加某体育项目训练,教练对他们近期的8次测试成绩进行了统计,如折线图所示:(1)根据折线图中提供的数据填写下表:(2)教练性格沉稳,欲从两人中选出一人参加市中学生运动会,应选择哪个参加比赛,并说明理由. 尺码/厘米2222.52323.52424.525销售量/双12512631项目学习卫生纪律活动参与所占比例40%25%25%10%次数2345人数22106分数708090100人数13x1测验类别平时期中考试期末考试测验1测验1测验1课题学习成绩8870968685x学生学业水平测试成绩综合测试成绩高考成绩甲858981乙888183日需求量n14151617181920频数10201616151310项目甲乙演讲内容95m语言表达9085形象风度85m现场效果9095测试项目测试成绩王晓丽李真林飞扬唱功989580音乐常识8090100综合知识8090100本数34567人数710922年龄192021222426人数11xy21人数平均数中位数方差甲班45829119.3乙班4587895.8组别成绩人数A90≤x≤1005B80≤x<90C70≤x<8010D60≤x<70E60分以下5年级x<6060≤x<8080≤x<9090≤x≤100八年级05a1九年级134b年级平均数中位数众数八年级78.377.5n九年级79.6m78组员甲乙丙丁戊平均成绩众数得分8176■808380■成绩(分)30405060708090100人数235x6y34型号(厘米)383940414243数量(件)25303650288平均数众数中位数乐清雁荡山8.29b江心屿7.8a8班级    选手1号2号3号4号5号八(1)8090859070八(2)9570908585平均数中位数众数八(1)83 ② 90八(2) ① 85 ③ 树苗平均高度(单位:m)标准差甲苗圃          1.8 0.2乙苗圃          1.8 0.6丙苗圃          2.0 0.6丁苗圃          2.0 0.2选手平均数中位数众数方差甲7a62.6乙b7cd统计量平均数众数中位数方差(1)班881.16(2)班81.56平均数(分)众数(分)中位数(分)方差(分2)小明13108.25小兵13131.25专题21.6 数据的分析十六大必考点【人教版】TOC \o "1-3" \h \u  HYPERLINK \l "_Toc1318" 【考点1 求一组数据的平均数】  PAGEREF _Toc1318 \h 1 HYPERLINK \l "_Toc32195" 【考点2 利用平均数求未知数据的值】  PAGEREF _Toc32195 \h 3 HYPERLINK \l "_Toc31952" 【考点3 利用已知的平均数求相关数据的平均数】  PAGEREF _Toc31952 \h 5 HYPERLINK \l "_Toc29802" 【考点4 运用平均数做决策】  PAGEREF _Toc29802 \h 6 HYPERLINK \l "_Toc24843" 【考点5 求加权平均数】  PAGEREF _Toc24843 \h 8 HYPERLINK \l "_Toc19406" 【考点6 利用加权平均数求未知数据的值】  PAGEREF _Toc19406 \h 10 HYPERLINK \l "_Toc14530" 【考点7 运用加权平均数做决策】  PAGEREF _Toc14530 \h 12 HYPERLINK \l "_Toc27803" 【考点8 求中位数】  PAGEREF _Toc27803 \h 16 HYPERLINK \l "_Toc6557" 【考点9 利用中位数求未知数据的值】  PAGEREF _Toc6557 \h 18 HYPERLINK \l "_Toc20193" 【考点10 运用中位数做决策】  PAGEREF _Toc20193 \h 20 HYPERLINK \l "_Toc30825" 【考点11 求众数】  PAGEREF _Toc30825 \h 24 HYPERLINK \l "_Toc25930" 【考点12 利用众数求未知数据的值】  PAGEREF _Toc25930 \h 26 HYPERLINK \l "_Toc20975" 【考点13 运用众数做决策】  PAGEREF _Toc20975 \h 27 HYPERLINK \l "_Toc25369" 【考点14 求方差或标准差】  PAGEREF _Toc25369 \h 31 HYPERLINK \l "_Toc6013" 【考点15 利用方差求未知数据的值】  PAGEREF _Toc6013 \h 33 HYPERLINK \l "_Toc15128" 【考点16 利用方差做决策】  PAGEREF _Toc15128 \h 35【考点1 求一组数据的平均数】【例1】(2022秋·山东烟台·八年级统考期中)某排球队6名上场队员的身高(单位:cm)是:180,184,188,190,192,194,现用一名身高为186cm的队员换下场上身高为192cm的队员,与换人前相比,场上队员的身高平均数(         )A.变大 B.变小 C.不变 D.都有可能【答案】B【分析】分别计算出原数据和新数据的平均数,然后进行比较即可得出答案.【详解】解:原数据的平均数为:180+184+188+190+192+1946=188(cm),新数据的平均数为180+184+188+190+186+1946=187(cm),∵188>187,∴与换人前相比,场上队员的身高平均数变小;故故选:B.【点睛】本题考查平均数的定义:一般地设n个数据x1,x2,…xn的平均数为x=x1+x2+x3+⋯+xnn.【变式1-1】(2022秋·全国·七年级期中)某校规定英语竞赛成绩85分以上为优秀,老师将85分记为0,并将一组5名同学的成绩简记为−3,+14,0,+5,−6,这5名同学的平均成绩是(    )A.83 B.87 C.82 D.84【答案】B【分析】先求出−3,+14,0,+5,−6的和,再求出平均成绩即可.【详解】解:(−3)+(+14)+0+(+5)+(−6)=10,这5名同学的平均成绩是85+10÷5=87,故选:B.【点睛】本题考查了正数和负数的应用,能根据题意列出算式是解此题的关键.【变式1-2】(2022春·山东滨州·八年级统考期中)小明这学期第一次数学考试得了72分,第二次数学考试得了86分,为了达到三次考试的平均成绩不少于80分的目标,他第三次数学考试至少得____分.【答案】82【分析】设第三次考试成绩为x,根据三次考试的平均成绩不少于80分列不等式,求出x的取值范围即可得答案.【详解】设第三次考试成绩为x,∵三次考试的平均成绩不少于80分,∴72+86+x3≥80,解得:x≥82,∴他第三次数学考试至少得82分,故答案为:82【点睛】本题考查了一元一次不等式的应用.熟练掌握求平均数的方法,根据不等关系正确列出不等式是解题关键.【变式1-3】(2022春·河南南阳·七年级统考期中)在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则(  )A.y>z>x B.x>z>y C.y>x>z D.z>y>x【答案】A【分析】根据题意,可以判断x、y、z的大小关系,从而可以解答本题.【详解】由题意可得,去掉一个最低分,平均分为y最大,去掉一个最高分,平均分为x最小,其次就是同时去掉一个最高分和一个最低分,平均分为z即y>z>x,故选:A.【点睛】此题主要考查了平均数的大小判断,分别确定各种情况的平均值是解答此题的关键.【考点2 利用平均数求未知数据的值】【例2】(2022春·天津南开·八年级统考期末)为监测某河道水质,进行了6次水质检测,绘制了如图的氨氮含量的折线统计图.若这6次水质检测氨氮含量平均数为1.5 mg/L,则第3次检测得到的氨氮含量是________ mg/L.【答案】1.【详解】解:设第3次检测得到的氨氮含量是xmg//L,由题意得 1.6+2+x+1.5+1.4+1.5=1.5×6,解得x=1.故答案为1.【变式2-1】(2022秋·河北石家庄·九年级统考期中)一组数据2,3,4,x,6的平均数是4,则x是_______.【答案】5【分析】根据用平均数的定义列出算式,再进行计算即可得出答案.【详解】解:∵数据2,3,4,x,6的平均数是4,∴(2+3+4+x+6)÷5=4,解得:x=5;故答案为:5.【点睛】本题考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.【变式2-2】(2022春·陕西渭南·八年级统考期末)某校5个环保小队参加植树活动,平均每组植树10棵,已知第一、二、三、五组分别植树9棵、12棵、9棵、8棵,则第四小组植树(   )A.7棵 B.9棵 C.10棵 D.12棵【答案】D【分析】根据平均数乘以5得到总数,减去其他四组的数量即可得到答案.【详解】5×10−9−12−9−8=12(棵)故选:D.【点睛】此题考查利用平均数求总数,理解平均数的意义,正确计算是解题的关键.【变式2-3】(2022秋·湖南永州·七年级统考期末)10个人围成一圈做游戏,游戏的规则是:每个人心里都想一个数,并把自己想的数告诉与他相邻的两个人,然后每个人将与他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报出来的数是5的人心里想的数是(    ).A.−10 B.10 C.−8 D.8【答案】B【分析】先设报5的人心里想的数为x,利用平均数的定义表示报7、报9、报1、报3、报5的人心里想的数,最后根据报5的人心里想的数相同建立方程即可.【详解】设报5的人心里想的数为x,则报7的人心里想的数与报5的人心理想的数的平均数为6,∴报7的人心里想的数为2×6-x=12−x,同理可得报9的人心里想的数为2×8−(12−x)=4+x,报1的人心里想的数为2×10−(4+x)=16−x,报3的人心里想的数为2×2−(16−x)=x−12,报5的人心里想的数为2×4−(x−12)=20−x,∴报5的人心里想和数分别为x和20−x,即20−x=x,解得:x=10故选:B【点睛】本题是阅读理解与规律探索题,考查了平均数及方程思想的运用.已知两个数的平均数及其中一个数,用代数式表示另一个数,是本题的关键.【考点3 利用已知的平均数求相关数据的平均数】【例3】(2022春·广西南宁·八年级统考期末)将一组数据中的每一个数减去50后,所得新的一组数据的平均数是2,则原来那组数据的平均数是(  )A.50 B.52 C.48 D.2【答案】B【详解】解:由题意知,新的一组数据的平均数=1n[(x1﹣50)+(x2﹣50+…+(xn﹣50)]= 1n[(x1+x2+…+xn)﹣50n]=2,∴1n(x1+x2+…+xn)﹣50=2,∴1n(x1+x2+…+xn)=52,即原来的一组数据的平均数为52.故选B.【变式3-1】(2022春·江苏南通·八年级统考期中)已知x1,x2,…,x10 的平均数是a;x11,x12,…,x30的平均数是b,则x1,x2,…,x30的平均数是_________.【答案】130(10a+20b)【分析】利用平均数的定义,利用数据x1,x2,…,x10的平均数为a,x11,x12,…,x30的平均数为b,可求出x1+x2+…+x10=10a,x11+x12+…+x30=20b,进而即可求出答案.【详解】解:因为数据x1,x2,…,x10的平均数为a,所以x1+x2+…+x10=10a,因为x11,x12,…,x30的平均数为b,所以x11+x12+…+x30=20b,∴x1,x2,…,x30的平均数=13010a+20b故答案为:130(10a+20b).【点睛】本题考查的是样本加权平均数的求法.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数.【变式3-2】(2022春·广西河池·八年级统考期末)一次数学测验满分是100分,全班38名学生平均分是67分.如果去掉A、B、C、D、E五人的成绩,其余人的平均分是62分,那么在这次测验中,C的成绩是_____分.【答案】100【分析】先根据平均数公式分别求出全班38名学生的总分,去掉A、B、C、D、E五人的总分,相减得到A、B、C、D、E五人的总分,再根据实际情况得到C的成绩.【详解】解:设A、B、C、D、E分别得分为a、b、c、d、e.则[38×67﹣(a+b+c+d+e)]÷(38﹣5)=62,因此a+b+c+d+e=500分.由于最高满分为100分,因此a=b=c=d=e=100,即C得100分.故答案是:100.【点睛】利用了平均数的概念建立方程.注意将A、B、C、D、E五人的总分看作一个整体求解.【变式3-3】(2022春·河南商丘·八年级统考期末)已知一组数据x1,x2,…,xn的平均数是﹣2,则数据3x1+2,3x2+2,…,3xn+2的平均数是_____.【答案】-4【分析】根据数据:x1,x2,…,xn的平均数是-2,得出数据3x1,3x2,…3xn的平均数是3×(﹣2)=﹣6,再根据每个数据都加2,即可得出数据:3x1+2,3x2+2,…3xn+2的平均数.【详解】解:∵数据x1,x2,…,xn的平均数是﹣2,∴数据3x1,3x2,…3xn的平均数是3×(﹣2)=﹣6,∴数据3x1+2,3x2+2,…,3xn+2的平均数是﹣6+2=﹣4.故答案为:﹣4.【点睛】本题考查的是算术平均数的求法,一般地设有n个数据,x1,x2,…xn,若每个数据都放大或缩小相同的倍数后再同加或同减去一个数,其平均数也有相对应的变化.【考点4 运用平均数做决策】【例4】(2022春·广东河源·八年级校考期末)某商店在一段时间内销售了某种女鞋30双,各种尺码的销售量如表所示,如果鞋店要购进100双这种女鞋,那么购进24厘米、24.5厘米和25厘米三种女鞋数量之和最合适的是(    )A.20双 B.33双 C.50双 D.80双【答案】B【分析】求得销售这三种鞋数量之和为10,是30的三分之一,故要购进的这三种鞋应是100的三分之.【详解】根据题意可得:∵销售的某种女鞋30双,24厘米、24.5厘米和25厘米三种女鞋数量之和为10,∴要购进100双这种女鞋,购进这三种女鞋数量之和应是1003≈33 ,∴购进100双这种女鞋,购进这三种女鞋数量之和最合适的是33双,故选:B【点睛】本题主要考查了综合运用统计知识解决问题的能力,理清题意,是解决此类问题的关键.【变式4-1】(2022春·山东临沂·八年级统考期末)今年是三年禁毒“大扫除”攻坚克难之年.为了让学生认识毒品的危害,某校举办了禁毒知识比赛,小红所在班级学生的平均成绩是80分,小星所在班级学生的平均成绩是85分,在不知道小红和小星成绩的情况下,下列说法比较合理的是(    )A.小红的分数比小星的分数低 B.小红的分数比小星的分数高C.小红的分数与小星的分数相同 D.小红的分数可能比小星的分数高【答案】D【分析】根据平均数的意义,逐一判断选项,即可.【详解】解:∵平均数不能代表每组数据中的具体哪个数,∴小红的分数和小星的分数并不能确定哪个分数高或低,∴小红的分数可能比小星的分数高,故选D.【点睛】本题主要考查平均数的意义,掌握” 平均数不能代表每组数据中的具体哪个数,只能反映数据集中趋势“,是解题的关键.【变式4-2】(2022春·北京海淀·九年级统考期末)在一次飞镖比赛中,甲、乙两位选手各扔10次飞镖,下图记录了他们的比赛结果.你认为两人中技术更好的是__________,你的理由是_____________________________.【答案】     乙     乙的平均成绩更高,成绩更稳定.【详解】解:由图可知,乙的技术更好,因为乙的平均成绩更高,成绩更稳定;故答案为乙;乙的平均成绩更高,成绩更稳定【变式4-3】(2022春·河北·八年级统考期末)某学习小组有15人参加捐款,其中小明的捐款数比15人捐款的平均数多2元,据此可知,下列说法错误的是(  )A.小明的捐款数不可能最少B.小明的捐款数可能最多C.将捐款数按从少到多排列,小明的捐款数一定比第8名多D.将捐款数按从少到多排列,小明的捐款数可能排在第14位【答案】C【分析】根据题意和算术平均数的含义,可以判断各个选项中的说法是否正确.【详解】解:∵小明的捐款数比15人捐款的平均数多2元,∴小明的捐款数不可能最少,故选项A正确;小明的捐款数可能最多,故选项B正确;将捐款数按从少到多排列,小明的捐款数不一定比第8名多,故选项C错误;将捐款数按从少到多排列,小明的捐款数可能排在第14位,故选项D正确;故选:C.【考点5 求加权平均数】【例5】(2022春·浙江·八年级期中)小明参加校园歌手比赛80分,音乐知识100分,综合知识90分,学校按唱功:音乐知识:综合知识6:2:2的比例计算总成绩为,小明的总成绩是(  )A.86 B.88 C.87 D.93【答案】A【分析】利用加权平均数即可求得小明的总评成绩.【详解】解:小明的总评成绩是:80×66+2+2+100×26+2+2+90×26+2+2=86(分).故选:A.【点睛】本题考查了加权平均数的计算方法,解题的关键是在进行计算的时候注意权的分配,另外还应细心,否则很容易出错.【变式5-1】(2022秋·山东淄博·八年级统考期中)某校评选先进班集体,从“学校”、“卫生”、“纪律”、“活动参与”四个方面考核打分,各项满分100分,所占比例如下表:八年级2班这四项得分依次为80,90,84,70,则该班四项综合得分(满分100)为( )A.81.5分 B.82.5分 C.84分 D.86分【答案】B【分析】直接根据加权平均数公式计算即可.【详解】解:80×40%+90×25%+84×25%+70×10%=82.5(分).故选B.【点睛】本题考查了加权平均数的计算,加权平均数公式为:x=x1w1+x2w2+......+xnwn(其中w1,w2,⋯⋯,wn分别为x1,x2,⋯⋯xn的权重).【变式5-2】(2022春·上海闵行·九年级校考期中)某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是(    )A.3次 B.3.5次 C.4次 D.4.5次【答案】C【分析】加权平均数:若n个数x1,x2,x3,⋯,xn的权分别是w1,w2,w3,⋯,wn,则x1w1+x2w2+…+xnwn÷w1+w2+…+wn叫做这n个数的加权平均数,依此列式计算即可求解.【详解】解:(2×2+3×2+4×10+5×6)÷20 =(4+6+40+30)÷20 =80÷20=4(次)答:这20名男生该周参加篮球运动次数的平均数是4次.故选:C.【点睛】本题考查的是加权平均数的求法.本题易出现的错误是求2,3,4,5这四个数的平均数,对平均数的理解不正确.【变式5-3】(2022春·浙江·八年级期中)甲、乙、丙三种糖果的售价分别为每千克6元、每千克7元、每千克8元,若将甲种糖果6千克,乙种糖果10千克,丙种糖果4千克混合在一起,则混合后的糖果的售价应定为每千克______元.【答案】6.9【分析】先根据甲种糖果6千克,乙种糖果10千克,丙种糖果4千克求出混合后的糖果甲、乙、丙比,再用各自所占比乘各自的售货单价相加即可.【详解】解:若将甲种糖果6千克,乙种糖果10千克,丙种糖果4千克混合在一起,则混合后的糖果甲、乙、丙比为3:5:2,∴混合后的糖果的售价每千克应定为310×6+510×7+210×8=6.9(元),故答案为:6.9.【点睛】本题考查了加权平均数,读懂题意,熟练运用加权平均数是解题的关键.【考点6 利用加权平均数求未知数据的值】【例6】(2022春·宁夏吴忠·八年级统考期末)下表是某学习小组一次数学测验的成绩统计表:已知该小组本次数学测验的平均分是85分,则x=_____.【答案】3【分析】利用加权平均数的计算公式列出方程求解即可.【详解】解:由题意,得70+80×3+90x+100=85×(1+3+x+1),解得x=3.故答案为3.【点睛】本题考查了加权平均数的计算和列方程解决问题的能力,解题的关键是利用加权平均数列出方程.【变式6-1】(2022春·内蒙古呼和浩特·八年级统考期末)某班有50名学生,平均身高为166cm,其中20名女生的平均身高为163cm,则30名男生的平均身高为_____cm.【答案】168【分析】设男生的平均身高为x,根据题意可得关于x的方程,解方程即可求得答案.【详解】设男生的平均身高为x,根据题意有:(20×163+30x)÷50 =166,解得x=168(cm).故答案为168.【点睛】本题考查了加权平均数,一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.【变式6-2】(2022春·北京朝阳·八年级校考期中)一位求职者参加某公司的招聘,面试和笔试的成绩分别是86和90,公司给出他这两项测试的平均成绩为87.6,可知此次招聘中_____(填“面试”或“笔试”)的权重较大.【答案】面试【分析】设此次招聘中面试的权重为a,从而可得笔试的权重为1−a,根据加权平均数的计算公式求出a的值,由此即可得出答案.【详解】解:设此次招聘中面试的权重为a,则笔试的权重为1−a,由题意得:86a+90(1−a)1=87.6,解得a=0.6,1−a=0.4<0.6,则此次招聘中面试的权重较大,故答案为:面试.【点睛】本题考查了加权平均数,熟记公式是解题关键.【变式6-3】(2022春·广东广州·八年级校考期中)小青在本学期的数学成绩如下表所示(成绩均取整数):(1)计算小青本学期的平时平均成绩;(2)如果学期的总评成绩是根据图所示的权重计算,那么本学期小青的期末考试成绩x至少为多少分才能保证达到总评成绩90分的最低目标?【答案】(1)85分(2)94分【分析】(1)平时成绩利用平均数公式计算;(2)根据加权平均数公式列出不等式,解之即可得.【详解】(1)该学期的平时平均成绩为:(88+70+96+86)÷4=85(分).(2)按照如图所示的权重,依题意得:85×10%+85×30%+60% x≥90.解得:x≥93.33,又∵成绩均取整数,∴x≥94.答:期末考试成绩至少需要94分.【点睛】此题主要考查了加权平均数的应用,注意学期的总评成绩是根据平时成绩,期中成绩,期末成绩的权重计算得出,注意加权平均树算法的正确运用,在考试中是易错点.【考点7 运用加权平均数做决策】【例7】(2022春·浙江宁波·八年级校考期中)浙江某大学部分专业采用“三位一体”的形式进行招生,现有甲、乙两名学生,他们各自的三类成绩(已折算成满分100分)如表所示:(1)如果根据三项得分的平均数,那么哪位同学排名靠前?(2)“三位一体”根据入围考生志愿,按综合成绩从高分到低分择优录取,综合成绩按“学业水平测试成绩×20%+综合测试成绩×20%+高考成绩×60%”计算形成,那么哪位同学排名靠前?【答案】(1)甲同学排名靠前(2)乙同学排名靠前【分析】(1)利用平均数的公式即可直接求解,即可判断;(2)利用加权平均数公式求解,即可判断.【详解】(1)解:甲的平均数为85+89+813=85分,乙的平均数为88+81+833=84分,∵85>84,∴根据三项得分的平均数,甲同学排名靠前;(2)解:甲同学的综合成绩为85×20%+89×20%+81×60%=83.4分,乙同学的综合成绩为88×20%+81×20%+83×60%=83.6分,∵83.6>83.4,∴乙同学排名靠前.【点睛】本题考查了算术平均数和加权平均数的计算.熟练掌握算术平均数和加权平均数的计算方法是解题的关键.【变式7-1】(2022春·福建厦门·九年级福建省厦门第六中学校考期中)花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天买不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n是自然数)的函数解析式;(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理如下:①花店在这100天每天均购进16枝玫瑰,求这100天的平均日利润;②花店依据这100天记录的日需求量,计划后续每天购进17枝玫瑰.从盈利的角度分析,你认为花店的决策是否正确?【答案】(1)y={10n−80(n≤15)80(n≥16)且n为自然数.(2)①76元,②从盈利的角度分析,花店的决策正确.【分析】(1)根据卖出一枝可得利润5元,卖不出一枝可得赔本5元,即可建立分段函数;(2)①根据频数分布表分别求解前10天,20天,以及后面70天的总利润,可得这100天的日利润(单位:元)的平均数.②同①先计算花店每天购进17枝玫瑰时,100天的平均日利润,再进行比较即可得到答案.(1)解:当n≥16时,y=16×(10-5)=80; 当n≤15时,y=5n-5(16-n)=10n-80,得:y={10n−80(n≤15)80(n≥16)且n为自然数.(2)解:①花店在这100天每天均购进16枝玫瑰,则平均日利润为1100[10(5×14−2×5)+20(5×15−5)+70×5×16]=76(元),所以这100天的平均日利润为76元.②花店计划后续每天购进17枝玫瑰,则100天的平均日利润约为:1100[10(5×14−3×5)+20×(5×15−2×5)+16(5×16−5)+54×5×17]=76.4(元),所以这100天的平均日利润为76.4元.∵76.4>76, 所以从盈利的角度分析,花店的决策正确.【点睛】本题考查的是一次函数的实际应用,加权平均数的计算,理解题意,再列出正确的函数表达式与表示平均数的运算式都是解本题的关键.【变式7-2】(2022春·浙江·八年级统考期中)某校举办“社会主义核心价值观”知识演讲比赛,8(1)班计划从甲、乙两位同学中选出一位参加学校的决赛,已知这两位在预赛中各项成绩如表图,且甲、乙两人预赛四项成绩的平均分相同.(1)表中m的值为_________;(2)把图中的统计图补充完整;(3)若将演讲内容、语言表达、形象风度、现场效果四项得分按4∶3∶1∶2的比例确定两人的最终得分,并选择最终得分较高的同学作为代表参赛,那么谁将代表八(1)班参赛?请说明理由【答案】(1)90;(2)见解析;(3)选甲参赛,理由见解析.【分析】(1)根据平均数计算公式列方程求解即可;(2)根据(1)的结果即可补全直方图;(3)利用加权平均数公式求得两人的成绩,即可作出比较.【详解】解:(1)根据题意得:95+90+85+904=m+85+m+954,解得:m=90.故答案是:90;(2)补全条形统计图如图所示:(3)甲的成绩:95×4+90×3+85×1+90×24+3+1+2=91.5(分),乙的成绩是:90×4+85×3+90×1+95×24+3+1+2=89.5(分),故甲的成绩好,应该选甲参赛.【点睛】本题考查的是统计表、条形统计图和平均数的相关知识,正确理解题意、读懂统计图、熟练掌握平均数的计算公式是解决问题的关键.【变式7-3】(2022春·甘肃金昌·八年级校考期中)某次歌咏比赛,前三名选手的成绩统计如下:(单位:分)将唱功、音乐常识综合知识三项测试成绩按6:3:1的加权平均分排出冠军、亚军季军,则冠军、亚军、季军各是谁?【答案】冠军是李真、亚军是王晓丽、季军是林飞杨.【分析】根据加权平均数的计算公式先分别求出三个人的最后得分,再进行比较即可.【详解】解:王晓丽的成绩是:(98×6+80×3+80)÷10=90.8(分);李真:(95×6+90×3+90)÷10=93(分);林飞杨:(80×6+100×3+100)÷10=88(分).∵93>90.8>88,∴冠军是李真、亚军是王晓丽、季军是林飞杨.【点睛】考查了加权平均数,本题易出现的错误是求三个数的平均数,对加权平均数的理解不正确.【考点8 求中位数】【例8】(2022春·江苏宿迁·九年级泗阳致远中学校考期中)已知一组数据:1、2、3、1、5,这组数据的中位数是(    )A.1 B.2 C.3 D.5【答案】B【分析】先从小到大排序,再根据中位数的定义求解即可.【详解】解:∵从小到大排列:1、1、2、3、5,∴这组数据的中位数是2.故选B.【点睛】本题考查了中位数,如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.【变式8-1】(2022春·浙江杭州·八年级校考期中)已知5个正数a1,a2,a3,a4,a5的平均数是a,且a1>a2>a3>a4>a5,则数据:a1,a2,a3,0,a4,a5的平均数和中位数是(    )A.a,a3 B.a,a3+a42C.56a,a2+a42 D.56a,a3+a42【答案】D【分析】对新数据按大小排列,然后根据平均数和中位数的定义计算即可.【详解】解:由平均数定义可知:16a1+a2+a3+0+a4+a5=16×5a=56a;将这组数据按从小到大排列为0,a5,a4,a3,a2,a1;由于有偶数个数,取最中间两个数的平均数.∴其中位数为a3+a42.故选:D.【变式8-2】(2022秋·广东茂名·八年级茂名市第一中学校考期中)为了解同学们的阅读情况,八年级(2)班的小李同学随机抽取了30名学生每人一年读课外书本数的登记情况,并绘制统计表如下:则这30个样本数据的中位数是(    )A.4 B.5 C.7 D.10【答案】A【分析】中位数的定义:一组数据按照从大到小或者从小到大的顺序排成一列,处于中间位置的数称为这组数据的中位数,根据中位数定义,结合题中所给数据情况求解即可.【详解】解:∵一共30个数据,其中位数为第15,16个数据的平均数,∴由表中数据知这组数据的第15,16个数据都为4,∴中位数为4+42=4,故选:A.【点睛】本题考查中位数的定义,根据题中所给13个数据的情况选择第7个数据是解决问题的关键.【变式8-3】(2022春·浙江杭州·八年级期中)某班五个兴趣小组的人数分别为4,4,5,x,6.已知这组数据的平均数是5,则这组数据的中位数是(    )A.5 B.4 C.3 D.2【答案】A【分析】先根据这组数据的平均数是5求出x,再把这组数字排序,然后求出中位数.【详解】∵这组数据的平均数是5∴4+4+5+x+65=5解得x=6把这组数据有小到大排序为4、4、5、6、6最中间的数是5∴这组数据的中位数是5故选A【点睛】本题主要考查了平均数、中位数,掌握平均数和中位数的计算方法是解题的关键.【考点9 利用中位数求未知数据的值】【例9】(2022秋·山东烟台·八年级统考期中)当五个整数从小到大排列,中位数为8,若这组数中的唯一众数为10,则这5个整数的和最大可能是(  )A.39 B.40 C.41 D.42【答案】C【分析】根据中位数和众数的定义分析可得答案.【详解】解:因为五个整数从小到大排列后,其中位数是8,这组数据的唯一众数是10.所以这5个数据分别是x,y,8,10,10,且xs乙2 C.s甲2=s乙2 D.无法确定【答案】A【分析】先分别求出甲、乙的平均数,再根据方差公式计算各自的方差,进行比较即可得.【详解】解:∵甲6次投篮测试(每次投篮10个)成绩为:8、7、8、6、9、8,乙6次投篮测试(每次投篮10个)成绩为:7、4、7、9、5、7,∴x甲=8+7+8+6+9+86=233,x乙=7+4+7+9+5+76=132,∴s甲2=163×8−2332+7−2332+6−2332+9−2332=89,s乙2=163×7−1322+4−1322+5−1322+9−1322=3112,∵89<3112,∴s甲224%>22%>14%>12%,∴9分出现的最多,则(2)班的众数是9分,∵5+10<25<5+10+19,∴(1)班第25、26个数在8分里,∴(1)的中位数是8+82=8(分),故答案为:8,8,9;(2)解:∵1.16<1.56,∴(1)班的成绩更均匀.【点睛】本题考查求中位数、求平均数、求众数及根据方差选择方案,解题的关键是求出总人数及熟练掌握各个考点定义.【变式16-3】(2022秋·河北唐山·九年级统考期中)小明、小兵参加某体育项目训练,教练对他们近期的8次测试成绩进行了统计,如折线图所示:(1)根据折线图中提供的数据填写下表:(2)教练性格沉稳,欲从两人中选出一人参加市中学生运动会,应选择哪个参加比赛,并说明理由.【答案】(1)小明的中位数是12.5,小兵的众数为13(2)选择小兵参加比赛,理由见解析【分析】(1)根据折线统计图,以及中位数,众数的定义,即可求解;(2)根据从中位数、众数,方差的意义判断即可求解.【详解】(1)解:∵小明的成绩分别为:10,10,11,10,16,14,16,17,从小到大排列为10,10,10,11,14,16,16,17,则中位数为11+142=12.5,小兵的成绩分别为:11,13,13,12,14,13,15,13,13出现次数最多,∴众数为13,小明的中位数是12.5,小兵的众数为13,(2)选择小兵参加比赛,理由:从中位数、众数的角度分析,小兵的成绩更好;从方差的角度分析,小兵的成绩更稳定. 尺码/厘米2222.52323.52424.525销售量/双12512631项目学习卫生纪律活动参与所占比例40%25%25%10%次数2345人数22106分数708090100人数13x1测验类别平时期中考试期末考试测验1测验1测验1课题学习成绩8870968685x学生学业水平测试成绩综合测试成绩高考成绩甲858981乙888183日需求量n14151617181920频数10201616151310项目甲乙演讲内容95m语言表达9085形象风度85m现场效果9095测试项目测试成绩王晓丽李真林飞扬唱功989580音乐常识8090100综合知识8090100本数34567人数710922年龄192021222426人数11xy21人数平均数中位数方差甲班45829119.3乙班4587895.8组别成绩人数A90≤x≤1005B80≤x<90C70≤x<8010D60≤x<70E60分以下5年级x<6060≤x<8080≤x<9090≤x≤100八年级05a1九年级134b年级平均数中位数众数八年级78.377.5n九年级79.6m78组员甲乙丙丁戊平均成绩众数得分8176■808380■成绩(分)30405060708090100人数235x6y34型号(厘米)383940414243数量(件)25303650288平均数众数中位数乐清雁荡山8.29b江心屿7.8a8班级    选手1号2号3号4号5号八(1)8090859070八(2)9570908585平均数中位数众数八(1)83 ② 90八(2) ① 85 ③ 平均数中位数众数八(1)838590八(2)858585树苗平均高度(单位:m)标准差甲苗圃          1.8 0.2乙苗圃          1.8 0.6丙苗圃          2.0 0.6丁苗圃          2.0 0.2选手平均数中位数众数方差甲7a62.6乙b7cd统计量平均数众数中位数方差(1)班881.16(2)班81.56统计量平均数众数中位数方差(1)班8881.16(2)班8981.56平均数(分)众数(分)中位数(分)方差(分2)小明13108.25小兵13131.25平均数(分)众数(分)中位数(分)方差(分2)小明131012.58.25小兵1313131.25
    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        人教版八年级数学下册举一反三系列专题21.6期末专项复习之数据的分析十六大必考点(原卷版+解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map