所属成套资源:浙教版八年级数学下册专题特训(原卷版+解析)
浙教版八年级数学下册专题2.7一元二次方程应用-变化率问题(专项训练)(原卷版+解析)
展开这是一份浙教版八年级数学下册专题2.7一元二次方程应用-变化率问题(专项训练)(原卷版+解析),共8页。
C.250(1+x)+250(1+x)2=900
D.250+250(1+x)+250(1+x)2=900
2.(2023·舒城期末)我县某贫围户2016年的家庭年收入为4000元,由于党的扶贫政策的落实,2017、2018年家庭年收入增加到共15000元,设平均每年的增长率为x,可得方程( )
A.4000(1+x)2=15000
B.4000+4000(1+x)+4000(1+x)2=15000
C.4000(1+x)+4000(1+x)2=15000
D.4000+4000(1+x)2=15000
3.(2023·松北期末)某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是( )
A.50(1+x2)=196B.50+50(1+x2)=196
C.50+50(1+x)+50(1+x2)=196D.50+50(1+x)+50(1+2x)=196
4.(2023秋•西峡县期中)为了迎接十一“黄金周”,某月季大观园准备分三个阶段扩大月季新品种种植面积,第一阶段已实现新品种1000m2的种植目标,第三阶段需实现1440m2的种植目标,设第二、第三阶段月季新品种种植面积的平均增长率为x,则下列方程正确的是( )
A.1000(1+x)×2=1440
B.1000(1+x)2=1440
C.1000(1+x2)=1440
D.1000(1+x)+1000(1+x)2=1440
5.(2023秋•大连期末)疫情期间“停课不停学”,辽宁省初中数学学科开通公众号进行公益授课,9月份该公众号关注人数为5000人,11月份该公众号关注人数达到7200人,若从9月份到11月份,每月该公众号关注人数的平均增长率相同,求该公众号关注人数的月平均增长率.
6.(2023秋•曹县期末)某村2018年的人均收入为20000元,2020年的人均收入为24200元,如果2021年该村人均收入的年增长率与前两年的人均收入年增长率相同,求2021年该村人均收入为多少元?
7.(2023春•沂源县校级月考)受益于国家支持新能源汽车发展等多重利好因素,我市某汽车零部件生产企业的利润逐年提高.据统计,2016年利润为2亿元,2018年利润为2.88亿元.
(1)求该企业从2016年到2018年利润的年平均增长率.
(2)若2019年保持前两年利润的年平均增长率不变,该企业2019年的利润能否超过3.4亿元?
8.(2023•东营)“杂交水稻之父”﹣﹣袁隆平先生所率领的科研团队在增产攻坚第一阶段实现水稻亩产量700公斤的目标,第三阶段实现水稻亩产量1008公斤的目标.
(1)如果第二阶段、第三阶段亩产量的增长率相同,求亩产量的平均增长率;
(2)按照(1)中亩产量增长率,科研团队期望第四阶段水稻亩产量达到1200公斤,请通过计算说明他们的目标能否实现.
9.(2023•威宁县模拟)书籍是人类宝贵的精神财富,读书则是传承优秀文化的通道.我县为响应全民阅读活动,利用春节假期面向社会开放县图书馆.据统计,第一天进馆100人次,进馆人次逐天增加,第三天进馆121人次.若进馆人次的日平均增长率相同.
(1)求进馆人次的日平均增长率;
(2)因疫情防控要求限制,县图书馆每天接纳能力不得超过200人次,在进馆人次的日平均增长率不变的条件下,县图书馆能否接纳第四天的进馆人次,说明理由.
专题2.7 一元二次方程应用-变化率问题(专项训练)
1.(2023·合肥模拟)某公司今年1月的营业额为250万元,按计划第1季度的营业额要达到900万元,设该公司2、3月的营业额的月平均增长率为 x .根据题意列方程正确的是( )
A.250(1+x)2=900B.250(1+x%)2=900
C.250(1+x)+250(1+x)2=900
D.250+250(1+x)+250(1+x)2=900
答案:D
【解答】解:根据题意列方程得:
250+250(1+x)+250(1+x)2=900 .
故答案为:D.
2.(2023·舒城期末)我县某贫围户2016年的家庭年收入为4000元,由于党的扶贫政策的落实,2017、2018年家庭年收入增加到共15000元,设平均每年的增长率为x,可得方程( )
A.4000(1+x)2=15000
B.4000+4000(1+x)+4000(1+x)2=15000
C.4000(1+x)+4000(1+x)2=15000
D.4000+4000(1+x)2=15000
答案:C
【解答】解:设平均每年的增长率是x,根据题意可得:
4000(1+x)+4000(1+x)2=15000.
故答案为:C.
3.(2023·松北期末)某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是( )
A.50(1+x2)=196B.50+50(1+x2)=196
C.50+50(1+x)+50(1+x2)=196D.50+50(1+x)+50(1+2x)=196
答案:C
【解答】一般增长后的量=增长前的量×(1+增长率),如果该厂八、九月份平均每月的增长率为x,那么可以用x分别表示八、九月份的产量:八、九月份的产量分别为50(1+x)、50(1+x)2,从而根据题意得出方程:
50+50(1+x)+50(1+x2)=196.
故答案为:C.
4.(2023秋•西峡县期中)为了迎接十一“黄金周”,某月季大观园准备分三个阶段扩大月季新品种种植面积,第一阶段已实现新品种1000m2的种植目标,第三阶段需实现1440m2的种植目标,设第二、第三阶段月季新品种种植面积的平均增长率为x,则下列方程正确的是( )
A.1000(1+x)×2=1440
B.1000(1+x)2=1440
C.1000(1+x2)=1440
D.1000(1+x)+1000(1+x)2=1440
答案:B
【解答】解:由题意得:1000(1+x)2=1440,
故选:B.
5.(2023秋•大连期末)疫情期间“停课不停学”,辽宁省初中数学学科开通公众号进行公益授课,9月份该公众号关注人数为5000人,11月份该公众号关注人数达到7200人,若从9月份到11月份,每月该公众号关注人数的平均增长率相同,求该公众号关注人数的月平均增长率.
【解答】解:设该公众号关注人数的月平均增长率为x,
根据题意得:5000(1+x)2=7200,
解得:x1=0.2=20%,x2=﹣2.2(舍去),
6.(2023秋•曹县期末)某村2018年的人均收入为20000元,2020年的人均收入为24200元,如果2021年该村人均收入的年增长率与前两年的人均收入年增长率相同,求2021年该村人均收入为多少元?
【解答】解:设该村人均收入的年平均增长率为x,
则20000(1+x)2=24,
解得x1=0.1=10%,x2=﹣2.1(不合题意,舍去),
24200×(1+10%)=26620(元),
答:2021年人均收入是26620元.
7.(2023春•沂源县校级月考)受益于国家支持新能源汽车发展等多重利好因素,我市某汽车零部件生产企业的利润逐年提高.据统计,2016年利润为2亿元,2018年利润为2.88亿元.
(1)求该企业从2016年到2018年利润的年平均增长率.
(2)若2019年保持前两年利润的年平均增长率不变,该企业2019年的利润能否超过3.4亿元?
答案:(1) 20%(2)能超过3.4亿元
【解答】解:(1)设该企业从2016年到2018年利润的年平均增长率为x,
依题意得:2(1+x)2=2.88,
解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).
答:该企业从2016年到2018年利润的年平均增长率为20%.
(2)2.88×(1+20%)=3.456(亿元),
∵3.456亿元>3.4亿元,
∴若2019年保持前两年利润的年平均增长率不变,该企业2019年的利润能超过3.4亿元.
8.(2023•东营)“杂交水稻之父”﹣﹣袁隆平先生所率领的科研团队在增产攻坚第一阶段实现水稻亩产量700公斤的目标,第三阶段实现水稻亩产量1008公斤的目标.
(1)如果第二阶段、第三阶段亩产量的增长率相同,求亩产量的平均增长率;
(2)按照(1)中亩产量增长率,科研团队期望第四阶段水稻亩产量达到1200公斤,请通过计算说明他们的目标能否实现.
答案:(1)20% (2)能实现
【解答】解:(1)设亩产量的平均增长率为x,
依题意得:700(1+x)2=1008,
解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).
答:亩产量的平均增长率为20%.
(2)1008×(1+20%)=1209.6(公斤).
∵1209.6>1200,
∴他们的目标能实现.
9.(2023•威宁县模拟)书籍是人类宝贵的精神财富,读书则是传承优秀文化的通道.我县为响应全民阅读活动,利用春节假期面向社会开放县图书馆.据统计,第一天进馆100人次,进馆人次逐天增加,第三天进馆121人次.若进馆人次的日平均增长率相同.
(1)求进馆人次的日平均增长率;
(2)因疫情防控要求限制,县图书馆每天接纳能力不得超过200人次,在进馆人次的日平均增长率不变的条件下,县图书馆能否接纳第四天的进馆人次,说明理由.
答案:(1)10%(2)能接纳第四天的进馆人次.
【解答】解:(1)设进馆人次的日平均增长率为x,
根据题得,100(1+x)2=121,
解得x1=0.1=10%,x2=﹣1.1(不符题意,舍去),
答:进馆人次的日平均增长率为10%;
(2)因为第四天的进馆人次为121×(1+0.1)=133.1(人次),
而133.1<200,
所以县图书馆能接纳第四天的进馆人次.
答:县图书馆能接纳第四天的进馆人次.
相关试卷
这是一份浙教版八年级下册第二章 一元二次方程2.1 一元二次方程课时训练,共13页。
这是一份数学浙教版2.1 一元二次方程课后复习题,共10页。试卷主要包含了解应用题等内容,欢迎下载使用。
这是一份初中浙教版第二章 一元二次方程2.1 一元二次方程课后练习题,共8页。