所属成套资源:2023-2024学年八年级数学上册《重难点题型•高分突破》(人教版)
数学八年级上册13.1.1 轴对称课后练习题
展开
这是一份数学八年级上册13.1.1 轴对称课后练习题,文件包含第十三章轴对称单元复习易错33题13个考点原卷版docx、第十三章轴对称单元复习易错33题13个考点解析版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
1.如图所示,已知AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,则∠DBC的度数为( )
A.40°B.70°C.30°D.50°
【答案】C
【解答】解:∵AB=AC,∠A=40°,
∴∠ABC=∠C=70°,
∵MN是AB的垂直平分线,
∴DA=DB,
∴∠DBA=∠A=40°,
∴∠DBC=30°,
故选:C.
2.已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为( )
A.31cmB.41cmC.51cmD.61cm
【答案】C
【解答】解:∵DG是AB的垂直平分线,
∴GA=GB,
∵△AGC的周长为31cm,
∴AG+GC+AC=BC+AC=31cm,又AB=20cm,
∴△ABC的周长=AB+AC+BC=51cm,
故选:C.
3.△ABC中,BC=10,AB的垂直平分线与AC的垂直平分线分别交BC于点D,E,且DE=4,则AD+AE的值为( )
A.6B.14C.6或14D.8或12
【答案】C
【解答】解:∵AB的垂直平分线与AC的垂直平分线分别交BC于点D,E,
∴AD=BD,AE=EC,
分两种情况:
当BD与CE无重合时,
∵BC=10,DE=4,
∴AD+AE=BD+CE=BC﹣DE=10﹣4=6,
当BD与CE有重合时,
∵BC=10,DE=4,
∴AD+AE=BD+CE=BC+DE=10+4=14,
综上所述:AD+AE的值为:6或14,
故选:C.
4.如图,直线l与m分别是△ABC边AC和BC的垂直平分线,l与m分别交边AB于点D和点E.
(1)若AB=10,则△CDE的周长是多少?为什么?
(2)若∠ACB=125°,求∠DCE的度数.
【答案】见试题解答内容
【解答】解:(1)△CDE的周长为10.
∵直线l与m分别是△ABC边AC和BC的垂直平分线,
∴AD=CD,BE=CE,
∴△CDE的周长=CD+DE+CE=AD+DE+BE=AB=10;
(2)∵直线l与m分别是△ABC边AC和BC的垂直平分线,
∴AD=CD,BE=CE,
∴∠A=∠ACD,∠B=∠BCE,
又∵∠ACB=125°,
∴∠A+∠B=180°﹣125°=55°,
∴∠ACD+∠BCE=55°,
∴∠DCE=∠ACB﹣(∠ACD+∠BCE)=125°﹣55°=70°.
5.如图,AD为△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点O.
(1)求证:AD垂直平分EF;
(2)若∠BAC=60°,写出DO与AD之间的数量关系,不需证明.
【答案】见试题解答内容
【解答】(1)证明:∵AD为△ABC的角平分线,DE⊥AB,DF⊥AC,
∴DE=DF,∠AED=∠AFD=90°,
在Rt△AED和Rt△AFD中,
∴Rt△AED≌Rt△AFD(HL),
∴AE=AF,
∴点A、D都在EF的垂直平分线上,
∴AD垂直平分EF;
(2),
证明:∵AD为△ABC的角平分线,∠BAC=60°,
∴∠EAD=30°,
∴DE=AD,
∵∠EAD=30°,DE⊥AB,
∴∠DEO=30°,
∴OD=DE,
∴DO=AD.
二.等腰三角形的性质(共8小题)
6.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为( )
A.7B.11C.7或11D.7或10
【答案】C
【解答】解:设等腰三角形的底边长为x,腰长为y,则根据题意,
得①或②
解方程组①得:,根据三角形三边关系定理,此时能组成三角形;
解方程组②得:,根据三角形三边关系定理此时能组成三角形,
即等腰三角形的底边长是11或7;
故选:C.
7.已知等腰三角形的一个外角等于100°,则它的顶角是( )
A.80°B.20°C.80°或20°D.不能确定
【答案】C
【解答】解:①若100°是顶角的外角,则顶角=180°﹣100°=80°;
②若100°是底角的外角,则底角=180°﹣100°=80°,那么顶角=180°﹣2×80°=20°.
故选:C.
8.如图,一钢架中,∠A=15°,焊上等长的钢条来加固钢架.若A P1=P1P2,则这样的钢条最多只能焊上( )条.
A.4B.5C.6D.7
【答案】B
【解答】解:如图:
∵∠A=∠P1P2A=15°
∴∠P2P1P3=30°,∠P1P3P2=30°
∴∠P1P2P3=120°
∴∠P3P2P4=45°
∴∠P3P4P2=45°
∴∠P2P3P4=90°
∴∠P4P3P5=60°
∴∠P3P5P4=60°
∴∠P3P4P5=60°
∴∠P5P4P6=75°
∴∠P4P6P5=75°
∴∠P4P5P6=30°
∴∠P6P5P7=90°,此时就不能在往上焊接了,综上所述总共可焊上5条.故应选B.
9.已知等腰三角形的一个内角为70°,则另两个内角的度数是( )
A.55°,55°B.70°,40°
C.55°,55°或70°,40°D.以上都不对
【答案】C
【解答】解:当70°为顶角时,另外两个角是底角,它们的度数是相等的,为(180°﹣70°)÷2=55°,
当70°为底角时,另外一个底角也是70°,顶角是180°﹣140°=40°.
故选:C.
10.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为 60°或120° .
【答案】见试题解答内容
【解答】解:当高在三角形内部时,顶角是60°;
当高在三角形外部时,顶角是120°.
故答案为:60°或120°.
11.定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k= 或 .
【答案】见试题解答内容
【解答】解:
①当∠A为顶角时,等腰三角形两底角的度数为:=50°
∴特征值k==
②当∠A为底角时,顶角的度数为:180°﹣80°﹣80°=20°
∴特征值k==
综上所述,特征值k为或
故答案为或
12.等腰三角形一腰上的高与另一腰的夹角为30度,则它的底角的度数为 30°或60° .
【答案】见试题解答内容
【解答】解:分两种情况:
①在左图中,AB=AC,BD⊥AC,∠ABD=30°,
∴∠A=60°,
∴∠C=∠ABC=(180°﹣∠A)=60°;
②在右图中,AB=AC,BD⊥AC,∠ABD=30°,
∴∠DAB=60°,∠BAC=120°,
∴∠C=∠ABC=(180°﹣∠BAC)=30°.
故答案为:30°或60°.
13.如图,在△ABC中,AC=BC,∠ACB=100°,点D在线段AB上运动(D不与A,B重合),连接CD,作∠CDE=40°,DE交BC于点E.若△CDE是等腰三角形,则∠ADC的度数是 80°或110° .
【答案】见试题解答内容
【解答】解:分三种情况:
①当CD=DE时,
∵∠CDE=40°,
∴∠DCE=∠DEC=70°,
∴∠ADC=∠B+∠DCE=110°,
②当DE=CE时,
∵∠CDE=40°,
∴∠DCE=∠CDE=40°,
∴∠ADC=∠DCE+∠B=80°.
③当EC=CD时,
∠BCD=180°﹣∠CED﹣∠CDE=180°﹣40°﹣40°=100°,
∵∠ACB=100°,
∴此时,点D与点A重合,不合题意.
综上所述,若△ADC是等腰三角形,则∠ADC的度数为80°或110°.
故答案为:80°或110°.
三.等腰三角形的判定(共3小题)
14.已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )条.
A.3B.4C.5D.6
【答案】B
【解答】解:如图所示:
当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形(AD,AE,AF,AG分别为分割线).
故选:B.
15.如图,已知每个小方格的边长为1,A,B两点都在小方格的顶点上,请在图中找一个顶点C,使△ABC为等腰三角形,则这样的顶点C有( )
A.8个B.7个C.6个D.5个
【答案】A
【解答】解:当AB为底时,作AB的垂直平分线,可找出格点C的个数有5个,
当AB为腰时,分别以A、B点为顶点,以AB为半径作弧,可找出格点C的个数有3个;
∴这样的顶点C有8个.
故选:A.
16.如图在Rt△ABC中,∠ACB=90°,∠CAB=36°,在直线AC或BC上取点M,使得△MAB为等腰三角形,符合条件的M点有 8 个.
【答案】见试题解答内容
【解答】解:如图,
①以A为圆心,AB为半径画圆,交直线AC有二点M1,M2,交BC有一点M3,(此时AB=AM);
②以B为圆心,BA为半径画圆,交直线BC有二点M5,M4,交AC有一点M6(此时BM=BA).
③AB的垂直平分线交AC一点M7(MA=MB),交直线BC于点M8;
∴符合条件的点有8个.
故答案为:8.
四.等腰三角形的判定与性质(共3小题)
17.如图,BP是∠ABC的平分线,AP⊥BP于P,连接PC,若△ABC的面积为1cm2,则△PBC的面积为( )
A.0.4cm2B.0.5cm2C.0.6cm2D.不能确定
【答案】B
【解答】解:如图,延长AP交BC于E,
∵BP平分∠ABC,
∴∠ABP=∠EBP,
∵AP⊥BP,
∴∠APB=∠EPB=90°,
∴△ABP≌△EBP(ASA),
∴AP=PE,
∴S△ABP=S△EBP,S△ACP=S△ECP,
∴S△PBC=S△ABC=×1=0.5(cm2),
故选:B.
18.如图,△ABC中,AB=AC,∠A=36°,以B为圆心,BC长为半径画弧,分别交AC、AB于D、E两点,连接BD、DE,则除△ABC外,图中是等腰三角形的还有( )
A.1个B.2个C.3个D.4个
【答案】D
【解答】解:除△ABC外,等腰三角形还有△BDC,△BED,△BAD,△AED,
理由是:∵BD=BC=BE,
∴△BDC和△BED是等腰三角形,
∵∠A=36°,AC=AB,
∴∠C=∠ABC=(180°﹣∠A)=72°,
∵BD=BC,
∴∠BDC=∠C=72°,
∴∠CBD=180°﹣72°﹣72°=36°,
∴∠ABD=72°﹣36°=36°=∠A,
∴BD=AD,
即△ABD是等腰三角形,
∵∠ABD=36°,BE=BD,
∴∠BDE=∠BED=(180°﹣∠ABD)=72°,
∵∠ADE=180°﹣72°﹣72°=36°=∠A,
∴AE=DE,
∴△AED是等腰三角形,
故选:D.
19.如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.
(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)
(2)设DN与AM交于点F,判断△ADF的形状.(只写结果)
【答案】见试题解答内容
【解答】解:(1)如图所示:
(2)△ADF的形状是等腰直角三角形,
理由是:∵AB=AC,AD⊥BC,
∴∠BAD=∠CAD,
∵AF平分∠EAC,
∴∠EAF=∠FAC,
∵∠FAD=∠FAC+∠DAC=∠EAC+∠BAC=×180°=90°,
即△ADF是直角三角形,
∵AB=AC,
∴∠B=∠ACB,
∵∠EAC=2∠EAF=∠B+∠ACB,
∴∠EAF=∠B,
∴AF∥BC,
∴∠AFD=∠FDC,
∵DF平分∠ADC,
∴∠ADF=∠FDC=∠AFD,
∴AD=AF,
即直角三角形ADF是等腰直角三角形.
五.等边三角形的性质(共1小题)
20.如图是由9个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是a,则六边形的周长是 30a .
【答案】见试题解答内容
【解答】解:因为每个三角形都是等边的,从其中一个三角形入手,
比如右下角的第二小的三角形,设它的边长为x,
则等边三角形的边长依次为x,x+a,x+a,x+2a,x+2a,x+3a,
所以六边形周长是,
2x+2(x+a)+2( x+2a)+(x+3a)=7x+9a,
而最大的三角形的边长等于第二小的三角形边长的2倍,
即x+3a=2x,
故x=3a.
所以周长为7x+9a=30a.
故答案为:30a.
六.等边三角形的判定与性质(共1小题)
21.边长为a的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为( )
A.B.C.D.
【答案】A
【解答】解:连接AD、DF、DB.
∵六边形ABCDEF是正六边形,
∴∠ABC=∠BAF=∠AFE,AB=AF,∠E=∠C=120°,EF=DE=BC=CD,
∴∠EFD=∠EDF=∠CBD=∠BDC=30°,
∵∠AFE=∠ABC=120°,
∴∠AFD=∠ABD=90°,
在Rt△ABD和RtAFD中
∴Rt△ABD≌Rt△AFD(HL),
∴∠BAD=∠FAD=×120°=60°,
∴∠FAD+∠AFE=60°+120°=180°,
∴AD∥EF,
∵G、I分别为AF、DE中点,
∴GI∥EF∥AD,
∴∠FGI=∠FAD=60°,
∵六边形ABCDEF是正六边形,△QKM是等边三角形,
∴∠EDM=60°=∠M,
∴ED=EM,
同理AF=QF,
即AF=QF=EF=EM,
∵等边三角形QKM的边长是a,
∴第一个正六边形ABCDEF的边长是a,即等边三角形QKM的边长的,
过F作FZ⊥GI于Z,过E作EN⊥GI于N,
则FZ∥EN,
∵EF∥GI,
∴四边形FZNE是平行四边形,
∴EF=ZN=a,
∵GF=AF=×a=a,∠FGI=60°(已证),
∴∠GFZ=30°,
∴GZ=GF=a,
同理IN=a,
∴GI=a+a+a=a,即第二个等边三角形的边长是a,与上面求出的第一个正六边形的边长的方法类似,可求出第二个正六边形的边长是×a;
同理第第三个等边三角形的边长是×a,与上面求出的第一个正六边形的边长的方法类似,可求出第三个正六边形的边长是××a;
同理第四个等边三角形的边长是××a,第四个正六边形的边长是×××a;
第五个等边三角形的边长是×××a,第五个正六边形的边长是××××a;
第六个等边三角形的边长是××××a,第六个正六边形的边长是×××××a,
即第六个正六边形的边长是×a,
故选:A.
七.生活中的轴对称现象(共1小题)
22.如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是( )号.
A.1B.2C.3D.4
【答案】D
【解答】解:根据轴对称的性质可知,台球走过的路径为:
∴该球最后将落入的球袋是4号.
故选:D.
八.轴对称的性质(共1小题)
23.如图,在等边△ABC中,点D在BC边上,点E在AC的延长线上,DE=DA.
(1)求证:∠BAD=∠EDC;
(2)作出点E关于直线BC的对称点M,连接DM、AM,猜想DM与AM的数量关系,并说明理由.
【答案】见试题解答内容
【解答】解:(1)如图1,∵△ABC是等边三角形,
∴∠BAC=∠ACB=60°.
又∵∠BAD+∠DAC=∠BAC,∠EDC+∠DEC=∠ACB,
∴∠BAD+∠DAC=∠EDC+∠DEC.
∵DE=DA,
∴∠DAC=∠DEC,
∴∠BAD=∠EDC.
(2)猜想:DM=AM.理由如下:
∵点M、E关于直线BC对称,
∴∠MDC=∠EDC,DE=DM.
又由(1)知∠BAD=∠EDC,
∴∠MDC=∠BAD.
∵∠ADC=∠BAD+∠B,
即∠ADM+∠MDC=∠BAD+∠B,
∴∠ADM=∠B=60°.
又∵DA=DE=DM,
∴△ADM是等边三角形,
∴DM=AM.
九.轴对称图形(共1小题)
24.如图,在3×3的正方形网格中,其中有三格被涂黑,若在剩下的6个空白小方格中涂黑其中1个,使所得的图形是轴对称图形,则可选的那个小方格的位置有 2 种.
【答案】2.
【解答】解:如图所示:在图中剩余的方格中涂黑一个正方形,使整个阴影部分成为轴对称图形,只要将1,2处涂黑,都是符合题意的图形.
故答案为:2.
一十.坐标与图形变化-对称(共1小题)
25.在平面直角坐标系中,有点A(a,1)、点B(2,b).
(1)当A、B两点关于直线y=﹣1对称时,求△AOB的面积;
(2)当线段AB∥x轴,且AB=4时,求a﹣b的值.
【答案】见试题解答内容
【解答】解:(1)由题意,得a=2,b=﹣3,则A(2,1),B(2,﹣3).
设AB与x轴相交于点D,则OD=2,AB=4.
∴S△AOB=AB×OD=×4×2=4.
(2)∵AB∥x轴,
∴A、B的纵坐标相同,
∴b=1.
∴B(2,1)
∵AB=4,
∴|a﹣2|=4.
解得a=﹣2或a=6.
当a=﹣2,b=1时,a﹣b=﹣3.
当a=6,b=1时,a﹣b=5.
一十一.作图-轴对称变换(共1小题)
26.如图,分别以△ABC的边AB,AC所在直线为对称轴作△ABC的对称图形△ABD和△ACE,∠BAC=150°,线段BD与CE相交于点O,连接BE、ED、DC、OA.有如下结论:①∠EAD=90°;②∠BOE=60°;③OA平分∠BOC;④EA=ED;⑤BP=EQ.其中正确的结论个数是( )
A.4个B.3个C.2个D.1个
【答案】B
【解答】解:∵△ABD和△ACE是△ABC的轴对称图形,
∴∠BAD=∠CAE=∠BAC,AB=AE,AC=AD,
∴∠EAD=3∠BAC﹣360°=3×150°﹣360°=90°,故①正确;
∴∠BAE=∠CAD=(360°﹣90°﹣150°)=60°,
由翻折的性质得,∠AEC=∠ABD=∠ABC,
又∵∠EPO=∠BPA,
∴∠BOE=∠BAE=60°,故②正确;
∵△ACE≌△ADB,
∴S△ACE=S△ADB,BD=CE,
∴BD边上的高与CE边上的高相等,
即点A到∠BOC两边的距离相等,
∴OA平分∠BOC,故③正确;
只有当AC=AB时,∠ADE=30°,才有EA=ED,故④错误;
在△ABP和△AEQ中,∠ABD=∠AEC,AB=AE,∠BAE=60°,∠EAQ=90°,
∴BP<EQ,故⑤错误;
综上所述,结论正确的是①②③共3个.
故选:B.
一十二.剪纸问题(共1小题)
27.如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是( )
A.B.C.D.
【答案】B
【解答】解:按照题意,动手操作一下,可知展开后所得的图形是选项B.
故选:B.
一十三.轴对称-最短路线问题(共6小题)
28.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为( )
A.140°B.100°C.50°D.40°
【答案】B
【解答】解:分别作点P关于OA、OB的对称点P1、P2,连接P1P2,交OA于M,交OB于N,则
OP1=OP=OP2,∠OP1M=∠MPO,∠NPO=∠NP2O,
根据轴对称的性质,可得MP=P1M,PN=P2N,则
△PMN的周长的最小值=P1P2,
∴∠P1OP2=2∠AOB=80°,
∴等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,
∴∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=100°,
故选:B.
29.如图,点P为∠AOB内一点,分别作点P关于OA、OB的对称点P1,P2,连接P1P2交OB于M,交OA于N,P1P2=15,则△PMN的周长为( )
A.16B.15C.14D.13
【答案】B
【解答】解:∵P点关于OB、OA的对称点为P1,P2,
∴P1M=PM,P2N=PN,
∴△PMN的周长=MN+PM+PN=MN+P1M+P2N=P1P2,
∵P1P2=15,
∴△PMN的周长为15.
故选:B.
30.如图,在△ABC中,AD是△ABC的角平分线,点E、F分别是AD、AB上的动点,若∠BAC=50°,当BE+EF的值最小时,∠AEB的度数为( )
A.105°B.115°C.120°D.130°
【答案】B
【解答】解:过点B作BB′⊥AD于点G,交AC于点B′,过点B′作B′F′⊥AB于点F′,与AD交于点E′,连接BE′,如图,
此时BE+EF最小.
∵AD是△ABC的角平分线,
∴∠BAD=∠B′AD=25°,
∴∠AE′F′=65°,
∵BB′⊥AD,
∴∠AGB=∠AGB′=90°,
∵AG=AG,
∴△ABG≌△AB′G(ASA),
∴BG=B′G,∠ABG=∠AB′G,
∴AD垂直平分BB′,
∴BE=BE′,
∴∠E′B′G=∠E′BG,
∵∠BAC=50°,
∴∠AB′F′=40°,
∴∠ABE=40°,
∴∠BE′F′=50°,
∴∠AE′B=115°.
故选:B.
31.如图,等腰三角形ABC底边BC的长为4cm,面积为12cm2,腰AB的垂直平分线EF交AB于点E,交AC于点F,若D为BC边上的中点,M为线段EF上一点,则△BDM的周长最小值为( )
A.5cmB.6cmC.8cmD.10cm
【答案】C
【解答】解:如图,连接AD,
∵△ABC是等腰三角形,点D是BC边的中点,
∴AD⊥BC,
∴S△ABC=BC•AD=×4×AD=12,
解得AD=6cm,
∵EF是线段AB的垂直平分线,
∴点B关于直线EF的对称点为点A,
∴AD的长为BM+MD的最小值,
∴△BDM的周长最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8cm.
故选:C.
32.如图,在边长为2的等边△ABC中,D是BC的中点,点E在线段AD上,连接BE,在BE的下方作等边△BEF,连接DF.当△BDF的周长最小时,∠DBF的度数是 30° .
【答案】见试题解答内容
【解答】解:如图,连接CF,
∵△ABC、△BEF都是等边三角形,
∴AB=BC=AC,BE=EF=BF,∠BAC=∠ABC=∠ACB=∠EBF=∠BEF=∠BFE=60°,
∴∠ABC﹣∠EBD=∠EBF﹣∠EBD,
∴∠ABE=∠CBF,
在△BAE和△BCF中,
,
∴△BAE≌△BCF(SAS),
∴∠BCF=∠BAD=30°,
如图,作点D关于CF的对称点G,连接CG,DG,则FD=FG,
∴当B,F,G在同一直线上时,DF+BF的最小值等于线段BG长,且BG⊥CG时,△BDF的周长最小,
由轴对称的性质,可得∠DCG=2∠BCF=60°,CD=CG,
∴△DCG是等边三角形,
∴DG=DC=DB,
∴∠DBG=∠DGB=∠CDG=30°,
故答案为:30°.
相关试卷
这是一份江苏省初中数学八年级下学期期末必刷易错60题(22个考点专练)(原卷版+解析版),文件包含江苏省八年级下学期期末必刷易错60题22个考点专练原卷版docx、江苏省八年级下学期期末必刷易错60题22个考点专练解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
这是一份苏科版八年级数学下学期专题11易错易混专题:分式与分式方程中常见的易错(原卷版+解析)(5大易错),共28页。
这是一份人教版八年级下册16.1 二次根式优秀同步达标检测题,共9页。