所属成套资源:人教A版高中数学选择性必修第三册 同步课时讲练(原卷版+教师版)
高中数学第六章 计数原理6.1 分类加法计数原理与分步乘法计数原理优秀测试题
展开
这是一份高中数学第六章 计数原理6.1 分类加法计数原理与分步乘法计数原理优秀测试题,文件包含人教A版高中数学选择性必修第三册第6章§61分类加法计数原理与分步乘法计数原理同步课时讲练原卷版doc、人教A版高中数学选择性必修第三册第6章§61分类加法计数原理与分步乘法计数原理同步课时讲练原卷版pdf、人教A版高中数学选择性必修第三册第6章§61分类加法计数原理与分步乘法计数原理同步课时讲练教师版doc、人教A版高中数学选择性必修第三册第6章§61分类加法计数原理与分步乘法计数原理同步课时讲练教师版pdf等4份试卷配套教学资源,其中试卷共68页, 欢迎下载使用。
第1课时 两个计数原理及其简单应用
学习目标 1.理解分类加法计数原理与分步乘法计数原理.2.会用这两个原理分析和解决一些简单的实际计数问题.
知识点一 分类加法计数原理
完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.
知识点二 分步乘法计数原理
完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.
思考 如何区分“完成一件事”是分类还是分步?
答案 区分“完成一件事”是分类还是分步,关键看一步能否完成这件事,若能完成,则是分类,否则,是分步.
1.在分类加法计数原理中,两类不同方案中的方法可以相同.( × )
2.在分类加法计数原理中,每类方案中的方法都能完成这件事.( √ )
3.在分步乘法计数原理中,事情若是分两步完成,那么其中任何一个单独的步骤都不能完成这件事,只有两个步骤都完成后,这件事情才算完成.( √ )
4.从甲地经丙地到乙地是分步问题.( √ )
一、分类加法计数原理
例1 设集合A={1,2,3,4},m,n∈A,则方程eq \f(x2,m)+eq \f(y2,n)=1表示焦点位于x轴上的椭圆有( )
A.6个 B.8个 C.12个 D.16个
答案 A
解析 因为椭圆的焦点在x轴上,所以m>n.当m=4时,n=1,2,3;当m=3时,n=1,2;当m=2时,n=1,即所求的椭圆共有3+2+1=6(个).
延伸探究
1.条件不变,结论变为“则方程eq \f(x2,m)+eq \f(y2,n)=1表示焦点位于y轴上的椭圆”有( )
A.6个 B.8个 C.12个 D.16个
答案 A
解析 因为椭圆的焦点在y轴上,所以mn.当m=5时,n=1,2,3,4.
当m=4时,n=1,2,3.当m=3时,n=1,2.当m=2时,n=1.
即所求的椭圆共有4+3+2+1=10(个).
反思感悟 应用分类加法计数原理应注意如下问题
(1)明确题目中所指的“完成一件事”是什么事,完成这件事可以有哪些方法,怎样才算是完成这件事.
(2)无论哪类方案中的哪种方法都可以独立完成这件事,而不需要再用到其他的方法,即各类方法之间是互斥的,并列的,独立的.
跟踪训练1 某校高三共有三个班,各班人数如下表:
(1)从三个班中任选1名学生担任学生会主席,有多少种不同的选法?
(2)从高三(1)班、(2)班男生中或从高三(3)班女生中选1名学生担任学生会生活部部长,有多少种不同的选法?
解 (1)从三个班中任选1名学生担任学生会主席,共有三类不同的方案.
第1类,从高三(1)班中选出1名学生,有50种不同的选法;
第2类,从高三(2)班中选出1名学生,有60种不同的选法;
第3类,从高三(3)班中选出1名学生,有55种不同的选法.
根据分类加法计算原理知,从三个班中任选1名学生担任学生会主席,共有50+60+55=165(种)不同的选法.
(2)从高三(1)班、(2)班男生中或从高三(3)班女生中选1名学生担任学生会生活部部长,共有三类不同的方案.
第1类,从高三(1)班男生中选出1名学生,有30种不同的选法;
第2类,从高三(2)班男生中选出1名学生,有30种不同的选法;
第3类,从高三(3)班女生中选出1名学生,有20种不同的选法.
根据分类加法计数原理知,从高三(1)班、(2)班男生中或从高三(3)班女生中选1名学生担任学生会生活部部长,共有30+30+20=80(种)不同的选法.
二、分步乘法计数原理
例2 已知集合M={-3,-2,-1,0,1,2},P(a,b)表示平面上的点(a,b∈M).问:
(1)P(a,b)可表示平面上多少个不同的点?
(2)P(a,b)可表示平面上多少个第二象限的点?
解 (1)确定平面上的点P(a,b)可分两步完成:
第一步,确定a的值,共有6种方法;
第二步,确定b的值,也有6种方法.
根据分步乘法计数原理,得到平面上的点的个数是6×6=36.
(2)确定第二象限的点,可分两步完成:
第一步,确定a,由于a0,所以有2种不同的确定方法.
根据分步乘法计数原理,得到第二象限点的个数为3×2=6.
反思感悟 利用分步乘法计数原理解题的一般思路
(1)分步:将完成这件事的过程分成若干步.
(2)计数:求出每一步中的方法数.
(3)结论:将每一步中的方法数相乘得最终结果.
跟踪训练2 从-1,0,1,2这四个数中选三个不同的数作为函数f(x)=ax2+bx+c的系数,可组成不同的二次函数共______个,其中不同的偶函数共________个.(用数字作答)
答案 18 6
解析 一个二次函数对应着a,b,c(a≠0)的一组取值,a的取法有3种,b的取法有3种,c的取法有2种,由分步乘法计数原理知,共有不同的二次函数3×3×2=18(个).
若二次函数为偶函数,则b=0.a的取法有3种,c的取法有2种,由分步乘法计数原理知,共有不同的偶函数3×2=6(个).
三、两个原理的综合应用
例3 现有5幅不同的国画,2幅不同的油画,7幅不同的水彩画.
(1)从中任选一幅画布置房间,有几种不同的选法?
(2)从这些国画、油画、水彩画中各选一幅布置房间,有几种不同的选法?
(3)从这些画中选出两幅不同种类的画布置房间,有几种不同的选法?
解 (1)分为三类:从国画中选,有5种不同的选法;从油画中选,有2种不同的选法;从水彩画中选,有7种不同的选法.根据分类加法计数原理,共有5+2+7=14(种)不同的选法.
(2)分为三步:国画、油画、水彩画各有5种,2种,7种不同的选法,根据分步乘法计数原理,共有5×2×7=70(种)不同的选法.
(3)分为三类:第一类是一幅选自国画,一幅选自油画,由分步乘法计数原理知,有5×2=10(种)不同的选法;
第二类是一幅选自国画,一幅选自水彩画,有5×7=35(种)不同的选法;
第三类是一幅选自油画,一幅选自水彩画,有2×7=14(种)不同的选法.
所以共有10+35+14=59(种)不同的选法.
反思感悟 使用两个原理的原则
使用两个原理解题时,一定要从“分类”“分步”的角度入手,“分类”是对于较复杂应用问题的元素分成互相排斥的几类,逐类解决,用分类加法计数原理;“分步”就是把问题分化为几个互相关联的步骤,然后逐步解决,这时可用分步乘法计数原理.
跟踪训练3 如图,甲地到乙地有3条公路可走,从乙地到丙地有2条公路可走,从甲地不经过乙地到丙地有2条水路可走.从甲地到丙地共有多少种不同的走法?
解 要从甲地到丙地共有两类不同的方案:
第1类,从甲地经乙地到丙地,共需两步完成:
第1步,从甲地到乙地,有3条公路可走;
第2步,从乙地到丙地,有2条公路可走.
根据分步乘法计数原理,从甲地经乙地到丙地有3×2=6(种)不同的走法.
第2类,从甲地不经乙地到丙地,有2条水路可走,即有2种不同的走法.
由分类加法计数原理知,从甲地到丙地共有6+2=8(种)不同的走法.
1.从A地到B地,可乘汽车、火车、轮船三种交通工具,如果一天内汽车发3次,火车发4次,轮船发2次,那么一天内乘坐这三种交通工具的不同走法数为( )
A.1+1+1=3 B.3+4+2=9
C.3×4×2=24 D.以上都不对
答案 B
2.从3名女同学和2名男同学中选出一人主持本班一次班会,则不同的选法种数为( )
A.6 B.5 C.3 D.2
答案 B
3.现有四件不同款式的上衣与三条不同颜色的长裤,如果选一条长裤与一件上衣配成一套,那么不同的选法种数为( )
A.7 B.64 C.12 D.81
答案 C
4.用1,2,3这三个数字能写出________个没有重复数字的两位偶数.
答案 2
5.一个袋子里放有6个球,另一个袋子里放有8个球,每个球各不相同,从两个袋子里各取一个球,共有________种不同的取法.
答案 48
1.知识清单:
(1)分类加法计数原理.
(2)分步乘法计数原理.
2.方法归纳:分类讨论.
3.常见误区:“分类”与“分步”不清,导致计数错误.
1.某同学从4本不同的科普杂志,3本不同的文摘杂志,2本不同的娱乐新闻杂志中任选一本阅读,则不同的选法共有( )
A.24种 B.9种 C.3种 D.26种
答案 B
解析 不同的杂志本数为4+3+2=9,从其中任选一本阅读,共有9种选法.
2.图书馆的书架有3层,第1层有3本不同的数学书,第2层有5本不同的语文书,第3层有8本不同的英语书,现从中任取1本书,则不同的取法共有( )
A.120种 B.16种 C.64种 D.39种
答案 B
解析 由于书架上有3+5+8=16(本)书,则从中任取1本书,共有16种不同的取法.
3.已知x∈{2,3,7},y∈{-31,-24,4},则(x,y)可表示不同的点的个数是( )
A.1 B.3 C.6 D.9
答案 D
解析 这件事可分为两步完成:第一步,在集合{2,3,7}中任取一个值x有3种方法;第二步,在集合{-31,-24,4}中任取一个值y有3种方法.根据分步乘法计数原理知,有3×3=9个不同的点.
4.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+bi,其中虚数有( )
A.30个 B.42个 C.36个 D.35个
答案 C
解析 要完成这件事可分两步,第一步确定b(b≠0),有6种方法,第二步确定a,有6种方法,故由分步乘法计数原理知,共有6×6=36(个)虚数.
5.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序实数对(a,b)的个数为( )
A.14 B.13 C.12 D.10
答案 B
解析 由已知得ab≤1.当a=-1时,b=-1,0,1,2,有4种可能;
当a=0时,b=-1,0,1,2,有4种可能;当a=1时,b=-1,0,1,有3种可能;
当a=2时,b=-1,0,有2种可能.∴共有(a,b)的个数为4+4+3+2=13.
6.一个礼堂有4个门,若从任一个门进,从任一个门出,共有不同走法________种.
答案 16
解析 由分步乘法计数原理得共有4×4=16(种)走法.
7.若在如图1的电路中,只合上一个开关可以接通电路,有________种不同的方法;
在如图2的电路中,合上两个开关可以接通电路,有________种不同的方法.
答案 5 6
解析 对于图1,按要求接通电路,只要在A中的两个开关或B中的三个开关中合上一个即可,故有2+3=5(种)不同的方法.
对于图2,按要求接通电路必须分两步进行:
第一步,合上A中的一个开关;第二步,合上B中的一个开关,
故有2×3=6(种)不同的方法.
8.用1,2,3这3个数字可写出没有重复数字的整数有________个.
答案 15
解析 分三类:
第一类为一位整数,有3个;
第二类为两位整数,有12,13,21,23,31,32,共6个;
第三类为三位整数,有123,132,213,231,312,321,共6个.
∴可写出没有重复数字的整数有3+6+6=15(个).
9.有一项活动,需从3位教师、8名男同学和5名女同学中选人参加.
(1)若只需1人参加,则有多少种不同的选法?
(2)若需教师、男同学、女同学各1人参加,则有多少种不同的选法?
解 (1)选1人,可分三类:
第1类,从教师中选1人,有3种不同的选法;
第2类,从男同学中选1人,有8种不同的选法;
第3类,从女同学中选1人,有5种不同的选法.
共有3+8+5=16(种)不同的选法.
(2)选教师、男同学、女同学各1人,分三步进行:
第1步,选教师,有3种不同的选法;
第2步,选男同学,有8种不同的选法;
第3步,选女同学,有5种不同的选法.
共有3×8×5=120(种)不同的选法.
10.若直线方程Ax+By=0中的A,B可以从0,1,2,3,5这五个数字中任取两个不同的数字,则方程所表示的不同直线共有多少条?
解 分两类完成:
第一类:当A或B中有一个为0时,表示直线为x=0或y=0,共有2条;
第二类:当A,B都不取0时,直线Ax+By=0被确定需分两步完成:
第一步,确定A的值,从1,2,3,5中选一个,共有4种不同的方法;
第二步,确定B的值,共有3种不同的方法.
由分步乘法计数原理,共确定4×3=12(条)直线.
由分类加法计数原理,方程所表示的不同直线有2+12=14(条).
11.某班小张等4位同学报名参加A,B,C三个课外活动小组,每位同学限报其中一个小组,且小张不能报A小组,则不同的报名方法有( )
A.27种 B.36种 C.54种 D.81种
答案 C
解析 小张的报名方法有2种,其他3位同学各有3种,由分步乘法计数原理知,共有2×3×3×3=54(种)不同的报名方法,选C.
12.(多选)已知集合A={-1,2,3,4},m,n∈A,则对于方程eq \f(x2,m)+eq \f(y2,n)=1的说法正确的是( )
A.可表示3个不同的圆
B.可表示6个不同的椭圆
C.可表示3个不同的双曲线
D.表示焦点位于x轴上的椭圆有3个
答案 ABD
解析 当m=n>0时,方程eq \f(x2,m)+eq \f(y2,n)=1表示圆,故有3个,选项A正确;当m≠n且m,n>0时,方程eq \f(x2,m)+eq \f(y2,n)=1表示椭圆,焦点在x,y轴上的椭圆分别有3个,故有3×2=6(个),选项B正确;若椭圆的焦点在x轴上,则m>n>0,当m=4时,n=2,3;当m=3时,n=2,即所求的椭圆共有2+1=3(个),选项D正确;当mn0,所以f′(x)=3x2+m>0,故f(x)=x3+mx+n在R上单调递增,
若函数f(x)=x3+mx+n在区间[1,2]上有零点,只需满足条件f(1)≤0且f(2)≥0,
所以m+n≤-1且2m+n≥-8,所以-2m-8≤n≤-m-1,
当m=1时,n取-2,-4,-8;当m=2时,n取-4,-8,-12;
当m=3时,n取-4,-8,-12;当m=4时,n取-8,-12.
共11种取法,而m有4种选法,n有4种选法,
则函数f(x)=x3+mx+n有4×4=16(种)情况,
故函数f(x)=x3+mx+n在区间[1,2]上有零点的概率是eq \f(11,16).
16.“渐升数”是指每个数字比它左边的数字大的正整数(如1 458),若把四位“渐升数”按从小到大的顺序排列,求第30个“渐升数”.
解 “渐升数”由小到大排列,则1在首位,2在百位的“渐升数”有6+5+4+3+2+1=21(个);1在首位,3在百位,4在十位的“渐升数”有5个;1在首位,3在百位,5在十位的“渐升数”有4个,此时“渐升数”有21+5+4=30(个),因此按从小到大的顺序排列,第30个“渐升数”必为1 359.
第2课时 两个计数原理的综合应用
学习目标 1.进一步理解分类加法计数原理和分步乘法计数原理的区别.2.会正确应用这两个计数原理计数.
知识点一 两个计数原理的区别与联系
知识点二 两个计数原理的应用
用两个计数原理解决计数问题时,最重要的是在开始计算之前要仔细分析两点:
一、要完成的“一件事”是什么;二、需要分类还是需要分步.
(1)分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.
(2)分步要做到“步骤完整”,即完成了所有步骤,恰好完成任务.分类后再计算每一步的方法数,最后根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.
思考 分类“不重不漏”的含义是什么?
答案 “不重”即各类之间没有交叉点,“不漏”即各类的并集是全集.
1.一个科技小组中有4名女同学、5名男同学,从中任选1名同学参加学科竞赛,共有不同的选派方法______种,若从中任选1名女同学和1名男同学参加学科竞赛,共有不同的选派方法______种.
答案 9 20
解析 根据分类加法计数原理,从中任选1名同学参加学科竞赛,共有5+4=9(种)选派方法.根据分步乘法计数原理,从中任选1名女同学和1名男同学参加学科竞赛,共有4×5=20(种)选派方法.
2.有一排四个信号显示窗,每个窗可亮红灯、绿灯或不亮灯,则这排信号显示窗所发出的信号种数是________.
答案 81
解析 每个信号显示窗都有3种可能,故有3×3×3×3=34=81(种)不同信号.
3.十字路口来往的车辆,如果不允许回头,共有________种行车路线.
答案 12
解析 起点为4种可能性,终点为3种可能性,则行车路线共有4×3=12(种).
4.多项式(a1+a2+a3)(b1+b2)+(a4+a5)(b3+b4)展开式共有________项.
答案 10
解析 共有3×2+2×2=10(项).
一、组数问题
例1 用0,1,2,3,4五个数字.
(1)可以排成多少个三位数字的电话号码?
(2)可以排成多少个三位数?
(3)可以排成多少个能被2整除的无重复数字的三位数?
解 (1)三位数字的电话号码,首位可以是0,数字也可以重复,每个位置都有5种排法,共有5×5×5=53=125(个).
(2)三位数的首位不能为0,但可以有重复数字,首先考虑首位的排法,除0外共有4种方法,第二、三位可以排0,因此,共有4×5×5=100(个).
(3)被2整除的数即偶数,末位数字可取0,2,4,因此,可以分两类,一类是末位数字是0,则有4×3=12(种)排法;一类是末位数字不是0,则末位有2种排法,即2或4,再排首位,因0不能在首位,所以有3种排法,十位有3种排法,因此有2×3×3=18(种)排法.因而有12+18=30(种)排法.即可以排成30个能被2整除的无重复数字的三位数.
延伸探究
由本例中的五个数字可组成多少个无重复数字的四位奇数?
解 完成“组成无重复数字的四位奇数”这件事,可以分四步:第一步定个位,只能从1,3中任取一个,有2种方法;第二步定首位,从1,2,3,4中除去用过的一个,从剩下的3个中任取一个,有3种方法;第三步,第四步把剩下的包括0在内的3个数字先排百位有3种方法,再排十位有2种方法.由分步乘法计数原理知共有2×3×3×2=36(个).
反思感悟 对于组数问题,应掌握以下原则
(1)明确特殊位置或特殊数字,是我们采用“分类”还是“分步”的关键.一般按特殊位置(末位或首位)分类,分类中再按特殊位置(特殊元素)优先的策略分步完成,如果正面分类较多,可采用间接法求解.
(2)要注意数字“0”不能排在两位数或两位数以上的数的最高位.
跟踪训练1 用0,1,2,3,4,5可以组成多少个无重复数字且比2 000大的四位偶数?
解 完成这件事可分为三类:
第一类是个位数字为0的比2 000大的四位偶数,可以分三步完成:
第一步,选取千位上的数字,只有2,3,4,5可以选择,有4种选法;
第二步,选取百位上的数字,除0和千位上已选定的数字以外,还有4个数字可以选择,有4种选法;
第三步,选取十位上的数字,有3种选法.
由分步乘法计数原理知,这类数的个数为4×4×3=48.
第二类是个位数字为2的比2 000大的四位偶数,可以分三步完成:
第一步,选取千位上的数字,除去2,1,0只有3个数字可以选择,有3种选法;
第二步,选取百位上的数字,在去掉已经确定的首尾2个数字之后,还有4个数字可以选择,有4种选法;
第三步,选取十位上的数字,有3种选法.
由分步乘法计数原理知,这类数的个数为3×4×3=36.
第三类是个位数字为4的比2 000大的四位偶数,其方法步骤同第二类.
对以上三类用分类加法计数原理,得所求无重复数字且比2 000大的四位偶数有48+36+36=120(个).
二、占位模型中标准的选择
例2 (1)4名同学选报跑步、跳高、跳远三个项目,每人报一项,共有多少种报名方法?
(2)4名同学选报跑步、跳高、跳远三个项目,每项限报一人,且每人至多报一项,共有多少种报名方法?
(3)4名同学争夺跑步、跳高、跳远三项冠军,共有多少种可能的结果?
解 (1)要完成的是“4名同学每人从三个项目中选一项报名”这件事,因为每人必报一项,4人都报完才算完成,所以按人分步,且分为四步,又每人可在三项中选一项,选法为3种,所以共有3×3×3×3=81(种)报名方法.
(2)每项限报一人,且每人至多报一项,因此跑步项目有4种选法,跳高项目有3种选法,跳远项目只有2种选法.根据分步乘法计数原理,可得不同的报名方法有4×3×2=24(种).
(3)要完成的是“三个项目冠军的获取”这件事,因为每项冠军只能有一人获得,三项冠军都有得主,这件事才算完成,所以应以“确定三项冠军得主”为线索进行分步,而每项冠军的得主有4种可能结果,所以共有4×4×4=64(种)可能的结果.
反思感悟 在占位模型中选择按元素还是按位置进行分解的标准是“唯一性”,即元素是否选、选是否只选一次,位置是否占、占是否只占一次.解题时一般选择具有“唯一性”的对象进行分解.
跟踪训练2 某市汽车牌照号码可以上网自编,但规定从左数第2个号码只能从字母B,C,D中选择,其他四个号码可以从0~9这10个数字中选择(数字可以重复).若某车主第1个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他可选的车牌号码的所有可能情况有( )
A.180种 B.360种 C.720种 D.960种
答案 D
解析 按照车主的要求,从左到右第1个号码有5种选法,第2个号码有3种选法,其余3个号码各有4种选法,因此共有5×3×4×4×4=960(种)情况.
三、涂色问题
例3 将红、黄、蓝、白、黑五种颜色涂在如图所示“田”字形的4个小方格内,每格涂一种颜色,相邻两格涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法?
解 第1个小方格可以从5种颜色中任取一种颜色涂上,有5种不同的涂法.
①当第2个、第3个小方格涂不同颜色时,有4×3=12(种)不同的涂法,第4个小方格有3种不同的涂法,由分步乘法计数原理可知有5×12×3=180(种)不同的涂法.
②当第2个、第3个小方格涂相同颜色时,有4种涂法,由于相邻两格不同色,因此,第4个小方格也有4种不同的涂法,由分步乘法计数原理可知有5×4×4=80(种)不同的涂法.
由分类加法计数原理可得共有180+80=260(种)不同的涂法.
延伸探究
本例中的区域改为如图所示,其他条件均不变,则不同的涂法共有多少种?
解 依题意,可分两类情况:①④不同色;①④同色.
第一类:①④不同色,则①②③④所涂的颜色各不相同,我们可将这件事情分成4步来完成.
第一步涂①,从5种颜色中任选一种,有5种涂法;
第二步涂②,从余下的4种颜色中任选一种,有4种涂法;
第三步涂③与第四步涂④时,分别有3种涂法和2种涂法.
于是由分步乘法计数原理得,不同的涂法有5×4×3×2=120(种).
第二类:①④同色,则①②③不同色,我们可将涂色工作分成三步来完成.
第一步涂①④,有5种涂法;第二步涂②,有4种涂法;第三步涂③,有3种涂法.
于是由分步乘法计数原理得,不同的涂法有5×4×3=60(种).
综上可知,所求的涂色方法共有120+60=180(种).
反思感悟 解决涂色问题的一般思路
(1)按区域的不同,以区域为主分步计数,用分步乘法计数原理分析.
(2)以颜色为主分类讨论,适用于“区域、点、线段”等问题,用分类加法计数原理分析.
(3)将空间问题平面化,转化为平面区域的涂色问题.
跟踪训练3 如图所示,将四棱锥S-ABCD的每一个顶点染上一种颜色,并使同一条棱上的两端点异色,现有5种颜色可供使用,求不同的染色方法.
解 由题意知,四棱锥S-ABCD的顶点S,A,B所染的颜色互不相同,它们共有5×4×3=60(种)染色方法.
当S,A,B染色确定时,不妨设其颜色分别为1,2,3,剩余2种颜色分别为4和5.
若C染2,则D可染3或4或5,有3种染法;
若C染4,则D可染3或5,有2种染法;
若C染5,则D可染3或4,有2种染法.
由分类加法计数原理知,当S,A,B染法确定时,C,D有7种染法.
由分步乘法计数原理得,不同的染色方法有60×7=420(种).
四、种植问题
例4 将3种作物全部种植在如图所示的5块试验田中,每块种植一种作物,且相邻的试验田不能种同一种作物,则不同的种植方法共有________种.
答案 42
解析 分别用a,b,c代表3种作物,先安排第一块田,有3种方法,不妨设放入a,再安排第二块田,有2种方法b或c,不妨设放入b,第三块也有2种方法a或c.
(1)若第三块田放c:
第四、五块田分别有2种方法,共有2×2=4(种)方法.
(2)若第三块田放a:
第四块有b或c 2种方法,
①若第四块放c:
第五块有2种方法;
②若第四块放b:
第五块只能种作物c,共1种方法.
综上,共有3×2×(2×2+2+1)=42(种)方法.
反思感悟 种植问题按种植的顺序分步进行,用分步乘法计数原理计数或按种植品种恰当选取情况分类,用分类加法计数原理计数.
跟踪训练4 从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,求有多少种不同的种植方法.
解 方法一 (直接法)若黄瓜种在第一块土地上,则有3×2=6(种)不同的种植方法.
同理,黄瓜种在第二块、第三块土地上,均有3×2=6(种)不同的种植方法.
故不同的种植方法共有6×3=18(种).
方法二 (间接法)从4种蔬菜中选出3种,种在三块地上,有4×3×2=24(种),其中不种黄瓜有3×2×1=6(种),故共有不同的种植方法24-6=18(种).
1.现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,则不同选法的种数是( )
A.56 B.65 C.eq \f(5×6×5×4×3×2,2) D.6×5×4×3×2
答案 A
解析 每位同学都有5种选择,共有5×5×5×5×5×5=56(种).
2.如果x,y∈N,且1≤x≤3,x+y
相关试卷
这是一份高中数学人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理优秀巩固练习,文件包含人教A版高中数学选择性必修三同步讲义第01讲61分类加法计数原理与分步乘法计数原理原卷版doc、人教A版高中数学选择性必修三同步讲义第01讲61分类加法计数原理与分步乘法计数原理教师版doc等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
这是一份高中数学人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理第1课时巩固练习,共5页。试卷主要包含了算盘是中国古代的一项重要发明等内容,欢迎下载使用。
这是一份人教A版 (2019)选择性必修 第三册第六章 计数原理6.1 分类加法计数原理与分步乘法计数原理精品同步练习题,文件包含同步讲义人教A版2019高中数学选修第三册61分类加法计数原理与分步乘法计数原理原卷版docx、同步讲义人教A版2019高中数学选修第三册61分类加法计数原理与分步乘法计数原理解析版docx等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。