所属成套资源:2024年高考数学第一轮复习精品讲义(学生版+解析)
2024年高考数学第一轮复习讲义第十三章13.3 绝对值不等式(学生版+解析)
展开
这是一份2024年高考数学第一轮复习讲义第十三章13.3 绝对值不等式(学生版+解析),共14页。
知识梳理
1.绝对值不等式的解法
(1)含绝对值的不等式|x|a的解集
(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法
①|ax+b|≤c⇔________________________.
②|ax+b|≥c⇔________________________.
(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法
①利用绝对值不等式的几何意义求解,体现了数形结合的思想.
②利用“零点分段法”求解,体现了分类讨论的思想.
③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.
2.含有绝对值的不等式的性质
(1)如果a,b是实数,则________≤|a±b|≤________.
(2)如果a,b,c是实数,那么______________,当且仅当________________时,等号成立.
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)若|x|>c的解集为R,则c≤0.( )
(2)不等式|x-1|+|x+2|b>0时等号成立.( )
(4)对|a-b|≤|a|+|b|当且仅当ab≤0时等号成立.( )
教材改编题
1.不等式3≤|5-2x|2的解集是________.
题型一 绝对值不等式的解法
例1 (2021·全国乙卷)已知函数f(x)=|x-a|+|x+3|.
(1)当a=1时,求不等式f(x)≥6的解集;
(2)若f(x)>-a,求a的取值范围.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
思维升华 解绝对值不等式的基本方法
(1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等式.
(2)当不等式两端均为正数时,可通过两边平方的方法,转化为不含绝对值符号的普通不等式.
(3)利用绝对值的几何意义,数形结合求解.
跟踪训练1 已知函数f(x)=eq \b\lc\|\rc\|(\a\vs4\al\c1(x+2))-eq \b\lc\|\rc\|(\a\vs4\al\c1(2x-3)).
(1)画出函数y=f(x)的图象;
(2)解不等式eq \b\lc\|\rc\|(\a\vs4\al\c1(fx))≥1.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
题型二 利用绝对值不等式的性质求最值
例2 已知函数f(x)=|2x+1|+|x-4|.
(1)解不等式f(x)≤6;
(2)若不等式f(x)+|x-4|1的解集;
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
(2)若对∀x∈R,不等式f(x)+2eq \b\lc\|\rc\|(\a\vs4\al\c1(x-2))≥4都成立,求实数m的取值范围.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
题型三 绝对值不等式的综合应用
例3 设函数f(x)=|2x+1|+|x-1|.
(1)画出y=f(x)的图象;
(2)当x∈[0,+∞)时,f(x)≤ax+b,求a+b的最小值.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
思维升华 (1)解决与绝对值有关的综合问题的关键是去掉绝对值,化为分段函数.
(2)数形结合是解决与绝对值有关的综合问题的常用方法.
跟踪训练3 (2023·成都联考)已知函数f(x)=|x-2|-a|x+1|.
(1)当a=1时,求不等式f(x)m+1恰有2个整数解,求实数m的取值范围.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________不等式
a>0
a=0
a0)和|ax+b|≥c(c>0)型不等式的解法
①|ax+b|≤c⇔-c≤ax+b≤c.
②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.
(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法
①利用绝对值不等式的几何意义求解,体现了数形结合的思想.
②利用“零点分段法”求解,体现了分类讨论的思想.
③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.
2.含有绝对值的不等式的性质
(1)如果a,b是实数,则||a|-|b||≤|a±b|≤|a|+|b|.
(2)如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)若|x|>c的解集为R,则c≤0.( × )
(2)不等式|x-1|+|x+2|b>0时等号成立.( × )
(4)对|a-b|≤|a|+|b|当且仅当ab≤0时等号成立.( √ )
教材改编题
1.不等式3≤|5-2x|
相关学案
这是一份2024年高考数学第一轮复习讲义第十三章13.2 参数方程(学生版+解析),共16页。
这是一份2024年高考数学第一轮复习讲义第十三章13.1 坐标系(学生版+解析),共16页。
这是一份2024年高考数学第一轮复习讲义第九章9.5 椭 圆(学生版+解析),共25页。