所属成套资源:【压轴冲刺】2024年新高考数学二轮复习新定义压轴题综合讲义
专题01 集合下的新定义(四大题型)-2024年新高考数学突破新定义压轴题综合讲义
展开
这是一份专题01 集合下的新定义(四大题型)-2024年新高考数学突破新定义压轴题综合讲义,文件包含专题01集合下的新定义四大题型原卷版docx、专题01集合下的新定义四大题型解析版docx等2份试卷配套教学资源,其中试卷共48页, 欢迎下载使用。
一、注意基础知识的整合、巩固。二轮复习要注意回归课本,课本是考试内容的载体,是高考命题的依据。浓缩课本知识,进一步夯实基础,提高解题的准确性和速度
二、查漏补缺,保强攻弱。在二轮复习中,对自己的薄弱环节要加强学习,平衡发展,加强各章节知识之间的横向联系,针对“一模”考试中的问题要很好的解决,根据自己的实际情况作出合理的安排。
三、提高运算能力,规范解答过程。在高考中运算占很大比例,一定要重视运算技巧粗中有细,提高运算准确性和速度,同时,要规范解答过程及书写。
四、强化数学思维,构建知识体系。同学们在听课时注意把重点要放到理解老师对问题思路的分析以及解法的归纳总结,以便于同学们在刷题时做到思路清晰,迅速准确。
五、解题快慢结合,改错反思。审题制定解题方案要慢,不要急于解题,要适当地选择好的方案,一旦方法选定,解题动作要快要自信。
六、重视和加强选择题的训练和研究。对于选择题不但要答案正确,还要优化解题过程,提高速度。灵活运用特值法、排除法、数形结合法、估算法等。
专题1集合下的新定义
【题型归纳目录】
题型一:定义新概念
题型二:定义新运算
题型三:定义新性质
题型四:定义新背景
【方法技巧与总结】
1、解答新定义型创新题的基本思路是:
(1)正确理解新定义;
(2)根据新定义建立关系式;
(3)结合所学的知识、经验将问题转化为熟悉的问题;
(4)运用所学的公式、定理、性质等合理进行推理、运算,求得结果.
2、集合中的新概念问题,往往是通过重新定义相应的集合或重新定义集合中的某个要素,结合集合的知识加以创新,我们还可以利用原有集合的相关知识来解题.
3、集合中的新运算问题是通过创新给出有关集合的一个全新的运算规则.按照新的运算规则,结合数学中原有的运算和运算规则,通过相关的集合或其他知识进行计算或逻辑推理等,从而达到解答的目的.
4、集合中的新性质问题往往是通过创新集合中给定的定义与性质衍生而来的.我们通过可以结合相应的集合概念、关系、运算等相关知识,利用相应的数学思想方法来解答有关的集合的新性质问题.
【典型例题】
题型一:定义新概念
【典例1-1】(2024·高三·浙江·阶段练习)设自然数,由个不同正整数构成集合,若集合的每一个非空子集所含元素的和构成新的集合,记为集合元素的个数
(1)已知集合,集合,分别求解.
(2)对于集合,若取得最大值,则称该集合为“极异集合”
①求的最大值(无需证明).
②已知集合是极异集合,记求证:数列的前项和.
【典例1-2】(2024·北京·模拟预测)已知集合,其中都是的子集且互不相同,记的元素个数,的元素个数.
(1)若,直接写出所有满足条件的集合;
(2)若,且对任意,都有,求的最大值;
(3)若且对任意,都有,求的最大值.
【变式1-1】(2024·高三·重庆沙坪坝·阶段练习)设集合、为正整数集的两个子集,、至少各有两个元素.对于给定的集合,若存在满足如下条件的集合:
①对于任意,若,都有;②对于任意,若,则.则称集合为集合的“集”.
(1)若集合,求的“集”;
(2)若三元集存在“集”,且中恰含有4个元素,求证:;
(3)若存在“集”,且,求的最大值.
题型二:定义新运算
【典例2-1】(2024·高三·全国·专题练习)设是由直线上所有点构成的集合,即,在点集上定义运算“”:对任意则.
(1)若是直线上所有点的集合,计算的值.
(2)对(1)中的点集,能否确定(其中)的值?
(3)对(1)中的点集,若,请你写出实数,,可能的值.
【典例2-2】(2024·全国·模拟预测)对于非空集合,定义其在某一运算(统称乘法)“×”下的代数结构称为“群”,简记为.而判断是否为一个群,需验证以下三点:
1、(封闭性)对于规定的“×”运算,对任意,都须满足;
2、(结合律)对于规定的“×”运算,对任意,都须满足;
3、(恒等元)存在,使得对任意,;
4、(逆的存在性)对任意,都存在,使得.
记群所含的元素个数为,则群也称作“阶群”.若群的“×”运算满足交换律,即对任意,,我们称为一个阿贝尔群(或交换群).
(1)证明:所有实数在普通加法运算下构成群;
(2)记为所有模长为1的复数构成的集合,请找出一个合适的“×”运算使得在该运算下构成一个群,并说明理由;
(3)所有阶数小于等于四的群是否都是阿贝尔群?请说明理由.
【变式2-1】(2024·高三·全国·专题练习)已知数集及定义在该数集上的某个运算(例如记为“*”),如果对一切,都有,那么就说,集合对运算“*”是封闭的.
(1)设,判断对通常的实数的乘法运算是否封闭?
(2)设,且,问对通常的实数的乘法是否封闭?试证明你的结论.
题型三:定义新性质
【典例3-1】(2024·高三·北京海淀·阶段练习)已知数集具有性质:对任意,与两数中至少有一个属于.
(1)分别判断数集与是否具有性质;
(2)求证:;
(3)给定正整数,求证:,,,组成等差数列.
【典例3-2】(2024·高二·北京海淀·期中)给定正整数,设集合.对于集合中的任意元素和,记.设,且集合,对于中任意元素,若则称具有性质.
(1)判断集合是否具有性质?说明理由;
(2)判断是否存在具有性质的集合,并加以证明.
【变式3-1】(2024·高一·重庆沙坪坝·阶段练习)已知集合,其中且,若对任意的,都有,则称集合具有性质.
(1)集合具有性质,求的最小值;
(2)已知具有性质,求证:;
(3)已知具有性质,求集合中元素个数的最大值,并说明理由.
题型四:定义新背景
【典例4-1】(2024·全国·模拟预测)拓扑学是一个研究图形(或集合)整体结构和性质的一门几何学,以抽象而严谨的语言将几何与集合联系起来,富有直观和逻辑.已知平面,定义对,,其度量(距离)并称为一度量平面.设,,称平面区域为以为心,为半径的球形邻域.
(1)试用集合语言描述两个球形邻域的交集;
(2)证明:中的任意两个球形邻域的交集是若干个球形邻域的并集;
(3)一个集合称作“开集”当且仅当其是一个无边界的点集.证明:的一个子集是开集当且仅当其可被表示为若干个球形邻域的并集.
【典例4-2】(2024·安徽芜湖·二模)对称变换在对称数学中具有重要的研究意义.若一个平面图形K在m(旋转变换或反射变换)的作用下仍然与原图形重合,就称K具有对称性,并记m为K的一个对称变换.例如,正三角形R在(绕中心O作120°的旋转)的作用下仍然与R重合(如图1图2所示),所以是R的一个对称变换,考虑到变换前后R的三个顶点间的对应关系,记;又如,R在(关于对称轴所在直线的反射)的作用下仍然与R重合(如图1图3所示),所以也是R的一个对称变换,类似地,记.记正三角形R的所有对称变换构成集合S.一个非空集合G对于给定的代数运算.来说作成一个群,假如同时满足:
I.,;
II.,;
Ⅲ.,,;
Ⅳ.,,.
对于一个群G,称Ⅲ中的e为群G的单位元,称Ⅳ中的为a在群G中的逆元.一个群G的一个非空子集H叫做G的一个子群,假如H对于G的代数运算来说作成一个群.
(1)直接写出集合S(用符号语言表示S中的元素);
(2)同一个对称变换的符号语言表达形式不唯一,如.对于集合S中的元素,定义一种新运算*,规则如下:,.
①证明集合S对于给定的代数运算*来说作成一个群;
②已知H是群G的一个子群,e,分别是G,H的单位元,,,分别是a在群G,群H中的逆元.猜想e,之间的关系以及,之间的关系,并给出证明;
③写出群S的所有子群.
【变式4-1】(2024·山东济南·一模)在空间直角坐标系中,任何一个平面的方程都能表示成,其中,,且为该平面的法向量.已知集合,,.
(1)设集合,记中所有点构成的图形的面积为,中所有点构成的图形的面积为,求和的值;
(2)记集合Q中所有点构成的几何体的体积为,中所有点构成的几何体的体积为,求和的值:
(3)记集合T中所有点构成的几何体为W.
①求W的体积的值;
②求W的相邻(有公共棱)两个面所成二面角的大小,并指出W的面数和棱数.
【过关测试】
1.(2024·高三·北京·阶段练习)设k是正整数,A是的非空子集(至少有两个元素),如果对于A中的任意两个元素x,y,都有,则称A具有性质.
(1)试判断集合和是否具有性质?并说明理由.
(2)若.证明:A不可能具有性质.
(3)若且A具有性质和.求A中元素个数的最大值.
2.(2024·北京丰台·一模)已知集合(,),若存在数阵满足:
①;
②.
则称集合为“好集合”,并称数阵为的一个“好数阵”.
(1)已知数阵是的一个“好数阵”,试写出,,,的值;
(2)若集合为“好集合”,证明:集合的“好数阵”必有偶数个;
(3)判断是否为“好集合”.若是,求出满足条件的所有“好数阵”;若不是,说明理由.
3.(2024·北京延庆·一模)已知数列,记集合.
(1)若数列为,写出集合;
(2)若,是否存在,使得?若存在,求出一组符合条件的;若不存在,说明理由;
(3)若,把集合中的元素从小到大排列,得到的新数列为, 若,求的最大值.
4.(2024·湖南邵阳·二模)给定整数,由元实数集合定义其随影数集.若,则称集合为一个元理想数集,并定义的理数为其中所有元素的绝对值之和.
(1)分别判断集合是不是理想数集;(结论不要求说明理由)
(2)任取一个5元理想数集,求证:;
(3)当取遍所有2024元理想数集时,求理数的最小值.
注:由个实数组成的集合叫做元实数集合,分别表示数集中的最大数与最小数.
5.(2024·高二·北京·阶段练习)对于集合,定义函数.对于两个集合,定义集合.已知集合.
(1)求与的值;
(2)用列举法写出集合;
(3)用表示有限集合所包含元素的个数.已知集合是正整数集的子集,求的最小值,并说明理由.
6.(2024·北京石景山·一模)已知集合,对于,,定义与之间的距离为.
(1)已知,写出所有的,使得;
(2)已知,若,并且,求的最大值;
(3)设集合,中有个元素,若中任意两个元素间的距离的最小值为,求证:.
7.(2024·高三·北京·阶段练习)设A是正整数集的一个非空子集,如果对于任意,都有或,则称A为自邻集.记集合的所有子集中的自邻集的个数为.
(1)直接写出的所有自邻集;
(2)若n为偶数且,求证:的所有含5个元素的子集中,自邻集的个数是偶数;
(3)若,求证:.
8.(2024·广东·模拟预测)已知集合中含有三个元素,同时满足①;②;③为偶数,那么称集合具有性质.已知集合,对于集合的非空子集,若中存在三个互不相同的元素,使得均属于,则称集合是集合的“期待子集”.
(1)试判断集合是否具有性质,并说明理由;
(2)若集合具有性质,证明:集合是集合的“期待子集”;
(3)证明:集合具有性质的充要条件是集合是集合的“期待子集”.
9.(2024·高三·全国·竞赛)对集合,定义其特征函数,考虑集合和正实数,定义为和式函数.设,则为闭区间列;如果集合对任意,有,则称是无交集合列,设集合.
(1)证明:L和式函数的值域为有限集合;
(2)设为闭区间列,是定义在上的函数.已知存在唯一的正整数,各项不同的非零实数,和无交集合列使得,并且,称为和式函数的典范形式.设为的典范数.
(i)设,证明:;
(ii)给定正整数,任取正实数和闭区间列,判断的典范数最大值的存在性.如果存在,给出最大值;如果不存在,说明理由.
10.(2024·高三·全国·竞赛)设M是由复数组成的集合,对M的一个子集A,若存在复平面上的一个圆,使得A的所有数在复平面上对应的点都在圆内或圆周上,且中的数对应的点都在圆外,则称A是一个M的“可分离子集”.
(1)判断是否是的“可分离子集”,并说明理由;
(2)设复数z满足,其中分别表示z的实部和虚部.证明:是的“可分离子集”当且仅当.
11.(2024·高三·北京·开学考试)由个正整数构成的有限集(其中),记,特别规定,若集合M满足:对任意的正整数,都存在集合M的两个子集A,B,使得成立,则称集合为“满集”.
(1)分别判断集合与是否为“满集”,请说明理由;
(2)若集合为“满集”,求的值:
(3)若为满集,,求的最小值.
12.(2024·高三·北京海淀·阶段练习)已知为所有元有序数组所组成的集合.其中().
对于中的任意元素,定义,的距离:
若,为的子集,且有个元素,并且满足任意,都存在唯一的,使得,则称为“好集”.
(1)若,,,,,,求,及的值;
(2)当时,求证:存在“好集”,且“好集”中不同元素的距离为5;
(3)求证:当时,“好集”不存在.
13.(2024·高一·浙江杭州·期中)定义1:通常我们把一个以集合作为元素的集合称为族(cllectin).
定义2:集合上的一个拓扑(tplgy)乃是的子集为元素的一个族,它满足以下条件:(1)和在中;(2)的任意子集的元素的并在中;(3)的任意有限子集的元素的交在中.
(1)族,族,判断族与族是否为集合的拓扑;
(2)设有限集为全集
(i)证明:;
(ii)族为集合上的一个拓扑,证明:由族所有元素的补集构成的族为集合上的一个拓扑.
14.(2024·高三·上海·期中)给定自然数i.称非空集合A为减i集,若A满足:
(i),;
(ii)对任意x,,只要,就有.问:
(1)直接判断是否为减0集,是否为减1集;
(2)是否存在减2集?若存在,求出所有的减2集;若不存在,请说明理由;
(3)是否存在减1集?若存在,求出所有的减1集;若不存在,请说明理由.
相关试卷
这是一份压轴题01 集合新定义、函数与导数13题型汇总-2024年高考数学压轴题专项训练(新高考通用),文件包含压轴题01集合新定义函数与导数13题型汇总原卷版docx、压轴题01集合新定义函数与导数13题型汇总解析版docx等2份试卷配套教学资源,其中试卷共122页, 欢迎下载使用。
这是一份专题01 19题新结构定义题(集合部分)(典型题型归类训练)-2024年高考数学复习解答题解题思路训练,文件包含专题0119题新结构定义题集合部分典型题型归类训练原卷版docx、专题0119题新结构定义题集合部分典型题型归类训练解析版pdf等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
这是一份新定义新情景压轴解答题-2024年高考数学压轴题专项训练,文件包含压轴题型新定义新情景压轴解答题解析版pdf、压轴题型新定义新情景压轴解答题学生版pdf等2份试卷配套教学资源,其中试卷共81页, 欢迎下载使用。