![抢分专练01 概率统计(原卷版)第1页](http://img-preview.51jiaoxi.com/3/3/15793040/1-1716890261625/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![抢分专练01 概率统计(原卷版)第2页](http://img-preview.51jiaoxi.com/3/3/15793040/1-1716890261691/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![抢分专练01 概率统计(原卷版)第3页](http://img-preview.51jiaoxi.com/3/3/15793040/1-1716890261731/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![抢分专练01 概率统计(解析版)第1页](http://img-preview.51jiaoxi.com/3/3/15793040/0-1716890256922/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![抢分专练01 概率统计(解析版)第2页](http://img-preview.51jiaoxi.com/3/3/15793040/0-1716890256971/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![抢分专练01 概率统计(解析版)第3页](http://img-preview.51jiaoxi.com/3/3/15793040/0-1716890257005/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:备战2024年高考数学二轮复习抢分秘籍(新高考专用)
抢分专练01 概率统计-备战2024年高考数学抢分秘籍(新高考专用)
展开这是一份抢分专练01 概率统计-备战2024年高考数学抢分秘籍(新高考专用),文件包含抢分专练01概率统计原卷版docx、抢分专练01概率统计解析版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
一、注意基础知识的整合、巩固。二轮复习要注意回归课本,课本是考试内容的载体,是高考命题的依据。浓缩课本知识,进一步夯实基础,提高解题的准确性和速度
二、查漏补缺,保强攻弱。在二轮复习中,对自己的薄弱环节要加强学习,平衡发展,加强各章节知识之间的横向联系,针对“一模”考试中的问题要很好的解决,根据自己的实际情况作出合理的安排。
三、提高运算能力,规范解答过程。在高考中运算占很大比例,一定要重视运算技巧粗中有细,提高运算准确性和速度,同时,要规范解答过程及书写。
四、强化数学思维,构建知识体系。同学们在听课时注意把重点要放到理解老师对问题思路的分析以及解法的归纳总结,以便于同学们在刷题时做到思路清晰,迅速准确。
五、解题快慢结合,改错反思。审题制定解题方案要慢,不要急于解题,要适当地选择好的方案,一旦方法选定,解题动作要快要自信。
六、重视和加强选择题的训练和研究。对于选择题不但要答案正确,还要优化解题过程,提高速度。灵活运用特值法、排除法、数形结合法、估算法等。
抢分专练01 概率统计
一、单选题
1.(2024·四川成都·三模)甲、乙两艘轮船都要在某个泊位停靠6小时,假定它们在一昼夜的时间段中随机地到达,则这两艘船中至少有一艘在停靠泊位时必须等待的概率为( )
A.B.C.D.
2.(2024·全国·模拟预测)陪伴是最好的亲情.某地政府倡议年轻人平时多陪伴父母,多措并举,创造就业机会,尽量让年轻人在家附近工作.一年后,该地政府对在家附近工作的年轻人进行了调查,得到他们一年能在家陪伴父母的天数,并绘制成如图所示的频率分布直方图,则样本中位数为( )
A.150.5B.152.5C.154.5D.156.5
3.(2024·全国·模拟预测)某项竞赛活动需要完成某项任务,天涯队、谛听队、洪荒队参加竞赛,天涯队、谛听队、洪荒队完成该项任务的概率分别为,,,且3队是否完成任务相互独立,则恰有2队完成任务的概率为( )
A.B.C.D.
4.(2024·黑龙江哈尔滨·二模)针对2025年第九届亚冬会在哈尔滨举办,校团委对“是否喜欢冰雪运动与学生性别的关系”进行了一次调查,其中被调查的男、女生人数相同,男生中喜欢冰雪运动的人数占男生人数的,女生中喜欢冰雪运动的人数占女生人数的,若依据的独立性检验,认为是否喜欢冰雪运动与学生性别有关,则被调查的学生中男生的人数不可能是( )
附:.
A.48B.54C.60D.66
5.(2024·宁夏石嘴山·三模)某班有学生人,现将所有学生按,,,,随机编号,若采用系统抽样的方法抽取一个容量为的样本(等距抽样),已知编号为,,,,号学生在样本中,则( )
A.B.C.14D.
6.(2024·河北·二模)已知随机变量服从正态分布,则“”是“”的( )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
7.(2024·河南信阳·模拟预测)从0,1,2,5中取三个不同的数字,组成能被5整除的三位数,则不同三位数有( )
A.12个B.10个C.8个D.7个
8.(2024·北京东城·一模)已知,若,则的取值可以为( )
A.2B.1C.D.
二、多选题
9.(2024·全国·模拟预测)2023年10月26日,神舟十七号载人飞船成功发射,我国在航天事业中取得举世瞩目的成就.为了普及航天知识,某校举行了航天知识竞赛,竞赛中设置了多选题目(每题4个选项中有2个或3个正确选项),每题全部选对的得5分,部分选对的得2分,有选错的得0分.已知某一道多选题甲完全不会,他随机选择2个或3个选项,该题有2个正确选项的概率为.记表示甲的得分,则( )
A.甲得2分的概率为B.若甲选择2个选项,则
C.若甲选择3个选项,则D.甲得5分的概率为
10.(2024·河北·二模)已知,,其中,.若,则( )
A.B.
C.D.
11.(23-24高二下·陕西西安·阶段练习)现有一款闯关游戏,共有4关,规则如下:在第n关要抛掷骰子n次,每次观察向上面的点数并做记录,如果这n次抛掷所出现的点数之和大于,则算闯过第n关,,2,3,4.假定每次闯关互不影响,则( )
A.直接挑战第2关并过关的概率为
B.连续挑战前两关并过关的概率为
C.若直接挑战第3关,设“三个点数之和等于15”,“至少出现一个5点”,则
D.若直接挑战第4关,则过关的概率是
12.(22-23高二下·江西南昌·期中)甲罐中有5个红球,2个白球,3个黑球,乙罐中有4个红球,3个白球和3个黑球,先从甲罐中随机取出一球放入乙罐,分别以表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一个球,以表示由乙罐取出的球是红球的事件,则下列结论正确的是( )
A.B.
C.D.
13.(23-24高二下·浙江·期中)盒中有编号为1,2,3,4的四个红球和编号为1,2,3,4的四个白球,从盒中不放回的依次取球,每次取一个球,用事件表示“第次首次取出红球”,用事件表示“第次取出编号为1的红球”,用事件表示“第次取出编号为1的白球”,则( )
A.B.
C.D.
14.(2023·全国·模拟预测)玻璃缸中装有2个黑球和4个白球,现从中先后无放回地取2个球.记“第一次取得黑球”为,“第一次取得白球”为,“第二次取得黑球”为,“第二次取得白球”为,则( )
A.B.
C.D.
15.(23-24高二下·江苏泰州·阶段练习)甲箱中有2个白球和4个黑球,乙箱中有4个白球和2个黑球先从甲箱中随机取出一球放入乙箱中,以分别表示由甲箱中取出的是白球和黑球;再从乙箱中随机取出一球,以表示从乙箱中取出的是白球,则下列结论正确的是( )
A.B.
C.互斥D.
16.(2024·湖南邵阳·模拟预测)有关数据显示,年轻一代的父母更加重视亲子陪伴,以往“以孩子为中心”的观念正逐步向与孩子玩在一起、学在一起的方向转变.如图为2023年中国父母参与过的各类亲子活动人数在参与调查总人数中的占比,根据该图,下列说法正确的是( )
A.在参与调查的总人数中父母参与过的亲子活动最多的是亲子阅读
B.在参与调查的总人数中同时参与过亲子阅读与亲子运动会的父母不少于
C.图中各类亲子活动占比的中位数为
D.图中10类亲子活动占比的极差为
17.(2024·全国·模拟预测)下列说法中正确的是( )
A.用简单随机抽样的方法从含有50个个体的总体中抽取一个容量为6的样本,则个体m被抽到的概率是12%
B.,当不变时,σ越大,该正态分布对应的正态密度曲线越矮胖
C.数据13,27,24,12,14,30,15,17,19,23的第70百分位数是23
D.若样本数据的标准差为1,则数据的标准差为32
三、填空题
18.(2024·广东深圳·二模)已知样本,,的平均数为2,方差为1,则,,的平均数为 .
19.(2024·全国·模拟预测)已知在矩形ABCD中,,,在矩形ABCD内(不包含边界)随机取一点E,若直线AE与直线CD交于点M,则的概率为 .
20.(2024·全国·模拟预测)记样本数据10,18,8,4,16,24,6,8,32的中位数为a,平均数为b,则= .
21.(2024·全国·模拟预测)小明同学进行射箭训练,每次射击是否中靶相互独立,根据以往训练情况可知小明射击一次中靶的概率为,则小明射击3次恰好有2次中靶的概率为 .
22.(2024·全国·模拟预测)某市高三年级男生的身高X(单位:)近似服从正态分布,随机选择一名本市高三年级的同学,则 .
四、解答题
23.(21-22高二下·全国·期末)为提升学生身体素质,鼓励学生参加体育运动,某高中学校学生发展中心随机抽查了100名学生,统计他们在暑假期间每天参加体育运动的时间,并把每天参加体育运动时间超过30分钟的记为“运动达标”,时间不超过30分钟的记为“运动欠佳”,运动达标与运动欠佳的人数比为,运动达标的女生与男生的人数比为,运动欠佳的男生有5人.
(1)根据上述数据,完成下面2×2列联表,并依据小概率值的独立性检验,分析“运动达标情况”与“性别”是否有关?
(2)现从“运动达标”的学生中按性别用分层随机抽样的方法抽取6人,再从这6人中任选2人进行体能测试,求选中的2人中恰有一人是女生的概率.
参考公式:,.
24.(2024·宁夏石嘴山·三模)刷脸时代来了,人们为“刷脸支付”给生活带来的便捷感到高兴,但“刷脸支付”的安全性也引起了人们的担忧.某调查机构为了解人们对“刷脸支付”的接受程度,通过安全感问卷进行调查(问卷得分在分之间),并从参与者中随机抽取人.根据调查结果绘制出如图所示的频率分布直方图.
(1)据此估计这人满意度的平均数同一组中的数据用该组区间的中点值作代表;
(2)某大型超市引入“刷脸支付”后,在推广“刷脸支付”期间,推出两种付款方案:方案一:不采用“刷脸支付”,无任何优惠,但可参加超市的抽奖返现金活动.活动方案为:从装有个形状、大小完全相同的小球其中红球个,黑球个的抽奖盒中,一次性摸出个球,若摸到个红球,返消费金额的;若摸到个红球,返消费金额的,除此之外不返现金.
方案二:采用“刷脸支付”,此时对购物的顾客随机优惠,但不参加超市的抽奖返现金活动,根据统计结果得知,使用“刷脸支付”时有的概率享受折优惠,有的概率享受折优惠,有的概率享受折优惠.现小张在该超市购买了总价为元的商品.
①求小张选择方案一付款时实际付款额的分布列与数学期望;
②试从期望角度,比较小张选择方案一与方案二付款,哪个方案更划算?(注:结果精确到)
25.(2024高三下·全国·专题练习)“九子游戏”是一种传统的儿童游戏,它包括打弹子、滚圈子、踢毽子、顶核子、造房子、拉扯铃子、刮片子、掼结子、抽陀子九种不同的游戏项目,某小学为丰富同学们的课外活动,举办了“九子游戏”比赛,所有的比赛项目均采用局胜的单败淘汰制,即先赢下局比赛者获胜.造房子游戏是同学们喜爱的项目之一,经过多轮淘汰后,甲、乙二人进入造房子游戏的决赛,已知每局比赛甲获胜的概率为,乙获胜的概率为.
(1)若,,设比赛结束时比赛的局数为,求的分布列与数学期望;
(2)设采用3局2胜制时乙获胜的概率为,采用5局3胜制时乙获胜的概率为,若,求的取值范围.
26.(2024·全国·模拟预测)某农业大学组织部分学生进行作物栽培试验,由于土壤相对贫瘠,前期作物生长较为缓慢,为了增加作物的生长速度,达到预期标准,小明对自己培育的一株作物使用了营养液,现统计了使用营养液十天之内该作物的高度变化
(1)观察散点图可知,天数与作物高度之间具有较强的线性相关性,用最小二乘法求出作物高度关于天数的线性回归方程(其中用分数表示);
(2)小明测得使用营养液后第22天该作物的高度为,请根据(1)中的结果预测第22天该作物的高度的残差.
参考公式:.参考数据:.
27.(2024高三·全国·专题练习)近年来,随着国家对新能源汽车产业的支持,很多国产新能源汽车迅速崛起,其因颜值高、动力充沛、提速快、空间大、用车成本低等特点得到民众的追捧,但是充电难成为影响新能源汽车销量的主要原因,国家为了加快新能源汽车的普及程度,在全国范围内逐步增建充电桩.某地区2019-2023年的充电桩数量及新能源汽车的年销量如表所示:
(1)已知可用线性回归模型拟合y与x的关系,请用相关系数加以说明(结果精确到0.001);
(2)求y关于x的线性回归方程,预测当该地区充电桩数量为24万台时,新能源汽车的年销量是多少万辆?
参考公式:相关系数,回归方程中斜率和截距的最小二乘估计公式分别为,.
参考数据:,,,.
28.(23-24高二下·江苏·单元测试)某机构从某一电商的线上交易大数据中来跟踪调查消费者的购买力,界定3至8月份购买商品在5000元及以上人群属“购买力强人群”,购买商品在5000元以下人群属“购买力弱人群”.现从电商平台消费人群中随机选出200人,发现这200人中属购买力强的人数占80%,并将这200人按年龄分组,分组区间为,得到频率直方图(如图).
(1)求出频率直方图中a的值和这200人的平均年龄.
(2)从第组中用分层抽样的方法抽取5人,并再从这5人中随机抽取2人进行电话回访,求这两人恰好属于不同组别的概率.
(3)把年龄在第组的居民称为青少年组,年龄在第组的居民称为中老年组.若选出的200人中“购买力弱人群”的中老年人有20人,问:是否有的把握认为,是否属“购买力强人群”与年龄有关?
29.(2024·浙江台州·二模)台州是全国三大电动车生产基地之一,拥有完整的产业链和突出的设计优势.某电动车公司为了抢占更多的市场份额,计划加大广告投入、该公司近5年的年广告费(单位:百万元)和年销售量(单位:百万辆)关系如图所示:令,数据经过初步处理得:
现有①和②两种方案作为年销售量y关于年广告费x的回归分析模型,其中a,b,m,n均为常数.
(1)请从相关系数的角度,分析哪一个模型拟合程度更好?
(2)根据(1)的分析选取拟合程度更好的回归分析模型及表中数据,求出y关于x的回归方程,并预测年广告费为6(百万元)时,产品的年销售量是多少?
(3)该公司生产的电动车毛利润为每辆200元(不含广告费、研发经费).该公司在加大广告投入的同时也加大研发经费的投入,年研发经费为年广告费的199倍.电动车的年净利润受年广告费和年研发经费影响外还受随机变量影响,设随机变量服从正态分布,且满足.在(2)的条件下,求该公司年净利润的最大值大于1000(百万元)的概率.(年净利润=毛利润×年销售量-年广告费-年研发经费-随机变量).
附:①相关系数,
回归直线中公式分别为,;
②参考数据:,,,.
30.(2024·全国·模拟预测)为提高居家养老服务质量,某机构组织调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区抽取了500位老年人,统计结果如下:
(1)估计该地区老年人中,需要志愿者提供帮助的比例;
(2)能否有的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
(3)根据(2)中的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的比例?说明理由.
附:,
0.1
0.05
0.01
0.005
0.001
2.706
3.841
6.635
7.879
10.828
性别
运动达标情况
合计
运动达标
运动欠佳
男生
女生
合计
0.10
0.05
0.01
0.001
2.706
3.841
6.635
10.828
天数x
1
2
3
4
5
6
7
8
9
10
作物高度y/cm
9
10
10
11
12
13
13
14
14
14
年份
2019
2020
2021
2022
2023
充电桩数量x/万台
1
3
5
7
9
新能源汽车年销量y/万辆
25
37
48
58
72
0.10
0.05
0.025
0.010
0.001
2.706
3.841
5.024
6.635
10.828
44
4.8
10
40.3
1.612
19.5
8.06
性别
需要志愿者
不需要志愿者
男
40
160
女
30
270
0.050
0.010
0.001
3.841
6.635
10.828
相关试卷
这是一份专题13 概率与统计-备战2022年新高考数学必考点提分精练(新高考地区专用),文件包含专题13概率与统计解析版docx、专题13概率与统计原卷版docx等2份试卷配套教学资源,其中试卷共125页, 欢迎下载使用。
这是一份浙江专用2020高考数学三轮冲刺抢分练仿真卷六,共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份浙江专用2020高考数学三轮冲刺抢分练仿真卷五,共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。