|试卷下载
搜索
    上传资料 赚现金
    中考数学 专题17 费马点中的对称模型与最值问题(专题练习)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 教师
      中考数学 专题17 费马点中的对称模型与最值问题(教师版)(专题练习).docx
    • 学生
      中考数学 专题17 费马点中的对称模型与最值问题(学生版)(专题练习).docx
    中考数学 专题17 费马点中的对称模型与最值问题(专题练习)01
    中考数学 专题17 费马点中的对称模型与最值问题(专题练习)02
    中考数学 专题17 费马点中的对称模型与最值问题(专题练习)03
    中考数学 专题17 费马点中的对称模型与最值问题(专题练习)01
    中考数学 专题17 费马点中的对称模型与最值问题(专题练习)02
    还剩11页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学 专题17 费马点中的对称模型与最值问题(专题练习)

    展开
    这是一份中考数学 专题17 费马点中的对称模型与最值问题(专题练习),文件包含中考数学专题17费马点中的对称模型与最值问题教师版专题练习docx、中考数学专题17费马点中的对称模型与最值问题学生版专题练习docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。

    【例题】
    1、如图,在△ABC中,∠ACB=90°,AB=AC=1,P是△ABC内一点,求PA+PB+PC的最小值.
    【分析】如图,以AD为边构造等边△ACD,连接BD,BD的长即为PA+PB+PC的最小值.至于点P的位置?这不重要!
    如何求BD?考虑到△ABC和△ACD都是特殊的三角形,过点D作DH⊥BA交BA的延长线于H点,根据勾股定理,即可得出结果.
    2、如图,已知矩形ABCD,AB=4,BC=6,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为______.
    3、如图,是内一定点,点,分别在边,上运动,若,,则的周长的最小值为___________.
    4、如图,点都在双曲线上,点,分别是轴,轴上的动点,则四边形周长的最小值为( )
    A.B.C.D.
    5、如图所示,,点为内一点,,点分别在上,求周长的最小值.
    6、如图,在平面直角坐标系中,抛物线y=x2﹣x﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.
    (1)求直线AE的解析式;
    (2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;
    (3)点G是线段CE的中点,将抛物线y=x2﹣x﹣沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.
    7、已知,如图,二次函数图象的顶点为,与轴交于、两点(点在点右侧),点、关于直线:对称.
    (1)求、两点的坐标,并证明点在直线上;
    (2)求二次函数解析式;
    (3)过点B作直线交直线于K点,M、N分别为直线AH和直线上的两个动点,连结HN、NM、MK,求HN+NM+MK的最小值.
    利用轴对称的性质,把三线段问题通过做对称转化为两点之间线段最短的问题进而解题。
    相关试卷

    中考数学二轮复习几何模型专题17 费马点中的对称模型与最值问题(2份打包,原卷版+教师版): 这是一份中考数学二轮复习几何模型专题17 费马点中的对称模型与最值问题(2份打包,原卷版+教师版),文件包含中考数学二轮复习几何模型专题17费马点中的对称模型与最值问题原卷版doc、中考数学二轮复习几何模型专题17费马点中的对称模型与最值问题教师版doc等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。

    专题68 费马点中的对称模型与最值问题-中考数学重难点专项突破(全国通用): 这是一份专题68 费马点中的对称模型与最值问题-中考数学重难点专项突破(全国通用),文件包含专题68费马点中的对称模型与最值问题原卷版docx、专题68费马点中的对称模型与最值问题解析版docx等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。

    专题68 费马点中的对称模型与最值问题-2024年中考数学重难点专项突破(全国通用): 这是一份专题68 费马点中的对称模型与最值问题-2024年中考数学重难点专项突破(全国通用),文件包含专题68费马点中的对称模型与最值问题原卷版docx、专题68费马点中的对称模型与最值问题解析版docx等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        中考数学 专题17 费马点中的对称模型与最值问题(专题练习)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map