资料中包含下列文件,点击文件名可预览资料内容
还剩5页未读,
继续阅读
成套系列资料,整套一键下载
苏科版数学八年级上学期-第1章 全等三角形 章末测试卷(培优卷)(原卷版+解析版)
展开
这是一份苏科版数学八年级上学期-第1章 全等三角形 章末测试卷(培优卷)(原卷版+解析版),文件包含第1章全等三角形章末测试卷培优卷原卷版docx、第1章全等三角形章末测试卷培优卷解析版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
第一单元 全等三角形(培优卷)(考试时间:45分钟 试卷满分:100分)选择题(本题共10小题,每小题3分,共30分)。1.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是( )A.甲和乙 B.乙和丙 C.只有乙 D.只有丙【答案】B【解答】解:图甲不符合三角形全等的判定定理,即图甲和△ABC不全等;图乙符合SAS定理,即图乙和△ABC全等;图丙符合AAS定理,即图丙和△ABC全等;故选:B.2.下列说法中不正确的是( )A.全等三角形一定能重合 B.全等三角形的面积相等 C.全等三角形的周长相等 D.周长相等的两个三角形全等【答案】D【解答】解:根据全等三角形的定义可得A、B、C正确,但是周长相等的两个三角形不一定全等,故选:D.3.如图,要使△ABC≌△ABD,下面给出的四组条件,错误的一组是( )A.∠C=∠D,∠BAC=∠BAD B.BC=BD,AC=AD C.∠BAC=∠BAD,∠ABC=∠ABD D.BD=BC,∠BAC=∠BAD【答案】D【解答】解:A、∠C=∠D,∠BAC=∠BAD,又AB=AB,根据AAS证明△ABC和△ABD全等,故本项正确,不符合题意;B、BC=BD,AC=AD,又AB=AB,根据SSS证明△ABC和△ABD全等,故本项正确,不符合题意;C、∠BAC=∠BAD,∠ABC=∠ABD,又AB=AB,根据ASA证明△ABC和△ABD全等,故本项正确,不符合题意;D、BD=BC,∠BAC=∠BAD,又AB=AB,不能证明△ABC和△ABD全等,故本项错误,符合题意;故选:D.4.如图,要测量池塘两岸相对的两点A,B之间的距离,可以在池塘外取AB的垂线BF上两点C,D,使BC=CD,再画出BF的垂线DE,使点E与A,C在同一条直线上,这时,可得△ABC≌△EDC,这时测得DE的长就是AB的长.判定△ABC≌△EDC最直接的依据是( )A.HL B.SAS C.ASA D.SSS【答案】C【解答】解:因为证明在△ABC≌△EDC用到的条件是:BC=CD,∠ABC=∠EDC=90°,∠ACB=∠ECD(对顶角相等),所以用到的是两角及这两角的夹边对应相等即ASA这一方法.故选:C.5.如图,D在AB上,E在AC上,且∠B=∠C,那么补充下列一个条件后,仍无法判定△ABE≌△ACD的是( )A.AD=AE B.AB=AC C.∠AEB=∠ADC D.BE=CD【答案】C【解答】解:A、根据AAS(∠A=∠A,∠C=∠B,AD=AE)能推出△ABE≌△ACD,故本选项不符合题意;B、根据ASA(∠A=∠A,AB=AC,∠B=∠C)能推出△ABE≌△ACD,故本选项不符合题意;C、三角对应相等的两三角形不一定全等,故本选项符合题意;D、根据AAS(∠A=∠A,∠B=∠C,BE=CD)能推出△ABE≌△ACD,故本选项不符合题意;故选:C.6.如图,在△ABC中,AB=AC,点D为线段BC上一动点(不与点B,C重合),连接AD,作∠ADE=∠B=40°,DE交线段AC于点 E.下列结论:①∠DEC=∠BDA;②若AD=DE,则BD=CE;③当DE⊥AC时,则D为BC中点;④当△ADE为等腰三角形时,∠BAD=40°.其中正确的有( )个.A.1个 B.2个 C.3个 D.4个【答案】C【解答】解:①∵∠ADC=∠B+∠BAD,∠B=∠ADE=40°,∴∠BAD=∠CDE.∵AB=AC,∴∠B=∠C.∴由三角形内角和定理知:∠DEC=∠BDA.故①正确;②∵AB=AC,∴∠B=∠C=40°,由①知:∠DEC=∠BDA.∵AD=DE.∴△ABD≌△DCE.∴BD=CE,故②正确;③∵D为BC中点,AB=AC,∴AD⊥BC,∴∠ADC=90°,∴∠CDE=50°,∵∠C=40°,∴∠DEC=90°,∴DE⊥AC,故③正确;④∵∠C=40°,∴∠AED>40°,∴∠ADE≠∠AED,∵△ADE为等腰三角形,∴AE=DE或AD=DE,当AE=DE时,∠DAE=∠ADE=40°,∵∠BAC=180°﹣40°﹣40°=100°,∴∠BAD=60°,故④不正确.故选:C.7.如图,∠BAD=90°,AC平分∠BAD,CB=CD,则∠B与∠ADC满足的数量关系为( )A.∠B=∠ADC B.2∠B=∠ADC C.∠B+∠ADC=180° D.∠B+∠ADC=90°【答案】C【解答】解:在射线AD上截取AE=AB,连接CE,如图所示:∵∠BAD=90°,AC平分∠BAD,∴∠BAC=∠EAC,在△ABC与△AEC中,,∴△ABC≌△AEC(SAS),∴BC=EC,∠B=∠AEC,∵CB=CD,∴CD=CE,∴∠CDE=∠CED,∴∠B=∠CDE,∵∠ADC+∠CDE=180°,∴∠ADC+∠B=180°.故选:C.8.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O,若∠1=38°,则∠BDE的度数为( )A.71° B.76° C.78° D.80°【答案】A【解答】解:∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,,∴△AEC≌△BED(ASA).∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=38°,∴∠C=∠EDC=71°,∴∠BDE=∠C=71°.故选:A.9.如图1,已知AB=AC,D为∠BAC的角平分线上面一点,连接BD,CD;如图2,已知AB=AC,D、E为∠BAC的角平分线上面两点,连接BD,CD,BE,CE;如图3,已知AB=AC,D、E、F为∠BAC的角平分线上面三点,连接BD,CD,BE,CE,BF,CF;…,依次规律,第n个图形中有全等三角形的对数是( )A.n B.2n﹣1 C. D.3(n+1)【答案】C【解答】解:∵AD是∠BAC的平分线,∴∠BAD=∠CAD.在△ABD与△ACD中,AB=AC,∠BAD=∠CAD,AD=AD,∴△ABD≌△ACD.∴图1中有1对三角形全等;同理图2中,△ABE≌△ACE,∴BE=EC,∵△ABD≌△ACD.∴BD=CD,又DE=DE,∴△BDE≌△CDE,∴图2中有3对三角形全等;同理:图3中有6对三角形全等;由此发现:第n个图形中全等三角形的对数是.故选:C.10.如图,在第1个△A1BC中,∠B=40°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E.得到第3个△A2A3E…按此做法继续下去,则第n+1个三角形中以An+1为顶点的底角度数是( )A. B. C. D.【答案】A【解答】解:∵在△CBA1中,∠B=40°,A1B=CB,∴∠BA1C==70°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×70°;同理可得∠EA3A2=()2×70°,∠FA4A3=()3×70°,∴第n+1个三角形中以An+1为顶点的底角度数是() n×70°.故选:A.填空题(本题共6题,每小题3分,共18分)。11.如图,在△ACD与△BCE中,AD与BE相交于点P,若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠APB的度数为 50° .【答案】50°.【解答】解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠ACD=∠BCE,∵∠ACE=55°,∠BCD=155°,∴∠ACD+∠BCE=∠BCD+∠ACE=155°+55°=210°,∴∠BCE=∠ACD=105°,∴∠ACB=∠BCE﹣∠ACE=105°﹣55°=50°,∵∠A=∠B,∠1=∠2,∴∠APB=∠ACB=50°,故答案为50°.12.在直线l上依次摆放着七个正方形(如图),已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4= 4 .【答案】4.【解答】解:如图,∵AB=BE,∠ACB=∠BDE=90°,∴∠ABC+∠BAC=90°,∠ABC+∠EBD=90°,∴∠BAC=∠EBD.在△ABC和△BED中,,∴△ABC≌△BED(AAS),∴BC=DE.∵S2=DE2,DE=BC,∴S2=BC2.∵S1=AC2,S2=BC2,AC2+BC2=AB2,AB2=1,∴S1+S2=1.同理S3+S4=3.则S1+S2+S3+S4=1+3=4.13.如图,C为线段AB上一动点(不与点A、B重合),在AB的上方分别作△ACD和△BCE,且AC=DC,BC=EC,∠ACD=∠BCE,AE、BD交于点P.有下列结论:①AE=DB;②∠APB=2∠ADC;③当AC=BC时,PC⊥AB;④PC平分∠APB.其中正确的是 ①②③④ .(把你认为正确结论的序号都填上)【答案】①②③④.【解答】解:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB,在△ACE和△DCB中,,∴△ACE≌△DCB(SAS),∴AE=DB,故①正确;∵△ACE≌△DCB,∴∠CAE=∠CDB,∵∠ACD=∠CDB+∠CBD,∴∠ACD=∠CAE+∠CBD,∵∠CAE+∠CBD+∠APB=180°,∴∠ACD+∠APB=180°,∵AC=DC,∴∠CAD=∠ADC,∵∠ACD+∠CAD+∠ADC=180°,∴∠ACD+2∠ADC=180°,∴∠APB=2∠ADC,故②正确;∵AC=BC,AC=DC,BC=EC,∴AC=BC=DC=EC,∴∠CAE=∠CBD,∴PA=PB,∵AC=BC,∴PC⊥AB,故③正确;如图,连接PC,过点C作CG⊥AE于G,CH⊥BD于H,∵△ACE≌△DCB,∴S△ACE=S△DCB,AE=BD,∴×AE×CG=×DB×CH,∴CG=CH,∵CG⊥AE,CH⊥BD,∴PC平分∠APB,故④正确,故答案为:①②③④.14.如图,已知△ABC的面积为16,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是 8 .【答案】8.【解答】解:延长AP交BC于D,∵BP平分∠ABC,∴∠ABP=∠DBP,∵AP⊥BP,∴∠APB=∠DPB=90°,在△APB和△DPB中,,∴△APB≌△DPB(ASA),∴AP=PD,∴S△APB=S△DPB,S△APC=S△DPC,∴△BPC的面积=×△ABC的面积=8,故答案为:8.15.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是 50 .【答案】见试题解答内容【解答】解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠FED=∠EFA=∠BGA=90°,∠EAF+∠BAG=90°,∠ABG+∠BAG=90°⇒∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG⇒△EFA≌△ABG∴AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=(6+4)×16﹣3×4﹣6×3=50.故答案为50.16.如图,∠MON=90°.△ABC中,AC=BC=10,AB=12,点A、B分别在边OM,ON上.当B在边ON上运动时,A随之在边OM上运动,△ABC的形状保持不变,在运动过程中,点C到点O的最大距离为 14 .【答案】14.【解答】解:作CD⊥AB于点D,连接OD,∵AC=BC=10,AB=12,∴点D为AB的中点,CD⊥AB,∴BD=8,∴CD==8,∵∠AOB=90°,AB=12,∴OD=6,∵OC≤OD+CD,∴当点O、D、C在同一直线上时,OC取得最大值,此时OC=OD+CD=6+8=14,故答案为:14.三、解答题(本题共5题,17题-20题,每题10分,21题12分)。17.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.已知AD=2cm,BC=5cm.(1)求证:FC=AD;(2)求AB的长.【答案】见试题解答内容【解答】(1)证明:∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等)∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,,∴△ADE≌△FCE(ASA),∴FC=AD(全等三角形的性质);(2)解:∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的对应边相等),∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF,∵AD=CF(已证),∴AB=BC+AD(等量代换)=5+2=7(cm).18.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=20,BE=4,求AB的长.【答案】见试题解答内容【解答】(1)证明:∵DE⊥AB,DF⊥AC,∴∠E=∠DFC=90°,∴在Rt△BED和Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴DE=DF,∵DE⊥AB,DF⊥AC,∴AD平分∠BAC;(2)解:∵∠AED=∠AFD=90°,AD=AD,DE=DF,∴Rt△ADE≌Rt△ADF(HL)∴AE=AF,∵AC=20,CF=BE=4,∴AE=AF=20﹣4=16,∴AB=AE﹣BE=16﹣4=12.19.【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是 B .A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是 C .A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC=BF.【答案】见试题解答内容【解答】(1)解:∵在△ADC和△EDB中,∴△ADC≌△EDB(SAS),故选B;(2)解:∵由(1)知:△ADC≌△EDB,∴BE=AC=6,AE=2AD,∵在△ABE中,AB=8,由三角形三边关系定理得:8﹣6<2AD<8+6,∴1<AD<7,故选C.(3)证明:延长AD到M,使AD=DM,连接BM,∵AD是△ABC中线,∴CD=BD,∵在△ADC和△MDB中∴△ADC≌△MDB,∴BM=AC,∠CAD=∠M,∵AE=EF,∴∠CAD=∠AFE,∵∠AFE=∠BFD,∴∠BFD=∠CAD=∠M,∴BF=BM=AC,即AC=BF.20.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠EDC= 25 °,∠AED= 65 °;(2)线段DC的长度为何值时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,求∠BDA的度数;若不可以,请说明理由.【答案】见试题解答内容【解答】解:(1)∵AB=AC,∴∠C=∠B=40°,∵∠ADE=40°,∠BDA=115°,∵∠EDC=180°﹣∠ADB﹣∠ADE=25°,∴∠AED=∠EDC+∠C=25°+40°=65°,故答案为:25;65;(2)当DC=2时,△ABD≌△DCE,理由:∵AB=2,DC=2,∴AB=DC,∵∠C=40°,∴∠DEC+∠EDC=140°,∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,①当DA=DE时,∠DAE=∠DEA=70°,∴∠BDA=∠DAE+∠C=70°+40°=110°;②当AD=AE时,∠AED=∠ADE=40°,∴∠DAE=100°,此时,点D与点B重合,不合题意;③当EA=ED时,∠EAD=∠ADE=40°,∴∠BDA=∠EAD+∠C=40°+40°=80°;综上所述,当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.21.如图1,△ABE是等腰三角形,AB=AE,∠BAE=45°,过点B作BC⊥AE于点C,在BC上截取CD=CE,连接AD、DE并延长AD交BE于点P;(1)求证:AD=BE;(2)试说明AD平分∠BAE;(3)如图2,将△CDE绕着点C旋转一定的角度,那么AD与BE的位置关系是否发生变化,说明理由.【答案】见试题解答内容【解答】解:(1)∵BC⊥AE,∠BAE=45°,∴∠CBA=∠CAB,∴BC=CA,在△BCE和△ACD中,,∴△BCE≌△ACD(SAS),∴AD=BE.(2)∵△BCE≌△ACD,∴∠EBC=∠DAC,∵∠BDP=∠ADC,∴∠BPD=∠DCA=90°,∵AB=AE,∴AD平分∠BAE.(3)AD⊥BE不发生变化.如图2,∵△BCE≌△ACD,∴∠EBC=∠DAC,∵∠BFP=∠AFC,∴∠BPF=∠ACF=90°,∴AD⊥BE.
第一单元 全等三角形(培优卷)(考试时间:45分钟 试卷满分:100分)选择题(本题共10小题,每小题3分,共30分)。1.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是( )A.甲和乙 B.乙和丙 C.只有乙 D.只有丙【答案】B【解答】解:图甲不符合三角形全等的判定定理,即图甲和△ABC不全等;图乙符合SAS定理,即图乙和△ABC全等;图丙符合AAS定理,即图丙和△ABC全等;故选:B.2.下列说法中不正确的是( )A.全等三角形一定能重合 B.全等三角形的面积相等 C.全等三角形的周长相等 D.周长相等的两个三角形全等【答案】D【解答】解:根据全等三角形的定义可得A、B、C正确,但是周长相等的两个三角形不一定全等,故选:D.3.如图,要使△ABC≌△ABD,下面给出的四组条件,错误的一组是( )A.∠C=∠D,∠BAC=∠BAD B.BC=BD,AC=AD C.∠BAC=∠BAD,∠ABC=∠ABD D.BD=BC,∠BAC=∠BAD【答案】D【解答】解:A、∠C=∠D,∠BAC=∠BAD,又AB=AB,根据AAS证明△ABC和△ABD全等,故本项正确,不符合题意;B、BC=BD,AC=AD,又AB=AB,根据SSS证明△ABC和△ABD全等,故本项正确,不符合题意;C、∠BAC=∠BAD,∠ABC=∠ABD,又AB=AB,根据ASA证明△ABC和△ABD全等,故本项正确,不符合题意;D、BD=BC,∠BAC=∠BAD,又AB=AB,不能证明△ABC和△ABD全等,故本项错误,符合题意;故选:D.4.如图,要测量池塘两岸相对的两点A,B之间的距离,可以在池塘外取AB的垂线BF上两点C,D,使BC=CD,再画出BF的垂线DE,使点E与A,C在同一条直线上,这时,可得△ABC≌△EDC,这时测得DE的长就是AB的长.判定△ABC≌△EDC最直接的依据是( )A.HL B.SAS C.ASA D.SSS【答案】C【解答】解:因为证明在△ABC≌△EDC用到的条件是:BC=CD,∠ABC=∠EDC=90°,∠ACB=∠ECD(对顶角相等),所以用到的是两角及这两角的夹边对应相等即ASA这一方法.故选:C.5.如图,D在AB上,E在AC上,且∠B=∠C,那么补充下列一个条件后,仍无法判定△ABE≌△ACD的是( )A.AD=AE B.AB=AC C.∠AEB=∠ADC D.BE=CD【答案】C【解答】解:A、根据AAS(∠A=∠A,∠C=∠B,AD=AE)能推出△ABE≌△ACD,故本选项不符合题意;B、根据ASA(∠A=∠A,AB=AC,∠B=∠C)能推出△ABE≌△ACD,故本选项不符合题意;C、三角对应相等的两三角形不一定全等,故本选项符合题意;D、根据AAS(∠A=∠A,∠B=∠C,BE=CD)能推出△ABE≌△ACD,故本选项不符合题意;故选:C.6.如图,在△ABC中,AB=AC,点D为线段BC上一动点(不与点B,C重合),连接AD,作∠ADE=∠B=40°,DE交线段AC于点 E.下列结论:①∠DEC=∠BDA;②若AD=DE,则BD=CE;③当DE⊥AC时,则D为BC中点;④当△ADE为等腰三角形时,∠BAD=40°.其中正确的有( )个.A.1个 B.2个 C.3个 D.4个【答案】C【解答】解:①∵∠ADC=∠B+∠BAD,∠B=∠ADE=40°,∴∠BAD=∠CDE.∵AB=AC,∴∠B=∠C.∴由三角形内角和定理知:∠DEC=∠BDA.故①正确;②∵AB=AC,∴∠B=∠C=40°,由①知:∠DEC=∠BDA.∵AD=DE.∴△ABD≌△DCE.∴BD=CE,故②正确;③∵D为BC中点,AB=AC,∴AD⊥BC,∴∠ADC=90°,∴∠CDE=50°,∵∠C=40°,∴∠DEC=90°,∴DE⊥AC,故③正确;④∵∠C=40°,∴∠AED>40°,∴∠ADE≠∠AED,∵△ADE为等腰三角形,∴AE=DE或AD=DE,当AE=DE时,∠DAE=∠ADE=40°,∵∠BAC=180°﹣40°﹣40°=100°,∴∠BAD=60°,故④不正确.故选:C.7.如图,∠BAD=90°,AC平分∠BAD,CB=CD,则∠B与∠ADC满足的数量关系为( )A.∠B=∠ADC B.2∠B=∠ADC C.∠B+∠ADC=180° D.∠B+∠ADC=90°【答案】C【解答】解:在射线AD上截取AE=AB,连接CE,如图所示:∵∠BAD=90°,AC平分∠BAD,∴∠BAC=∠EAC,在△ABC与△AEC中,,∴△ABC≌△AEC(SAS),∴BC=EC,∠B=∠AEC,∵CB=CD,∴CD=CE,∴∠CDE=∠CED,∴∠B=∠CDE,∵∠ADC+∠CDE=180°,∴∠ADC+∠B=180°.故选:C.8.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O,若∠1=38°,则∠BDE的度数为( )A.71° B.76° C.78° D.80°【答案】A【解答】解:∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,,∴△AEC≌△BED(ASA).∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=38°,∴∠C=∠EDC=71°,∴∠BDE=∠C=71°.故选:A.9.如图1,已知AB=AC,D为∠BAC的角平分线上面一点,连接BD,CD;如图2,已知AB=AC,D、E为∠BAC的角平分线上面两点,连接BD,CD,BE,CE;如图3,已知AB=AC,D、E、F为∠BAC的角平分线上面三点,连接BD,CD,BE,CE,BF,CF;…,依次规律,第n个图形中有全等三角形的对数是( )A.n B.2n﹣1 C. D.3(n+1)【答案】C【解答】解:∵AD是∠BAC的平分线,∴∠BAD=∠CAD.在△ABD与△ACD中,AB=AC,∠BAD=∠CAD,AD=AD,∴△ABD≌△ACD.∴图1中有1对三角形全等;同理图2中,△ABE≌△ACE,∴BE=EC,∵△ABD≌△ACD.∴BD=CD,又DE=DE,∴△BDE≌△CDE,∴图2中有3对三角形全等;同理:图3中有6对三角形全等;由此发现:第n个图形中全等三角形的对数是.故选:C.10.如图,在第1个△A1BC中,∠B=40°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E.得到第3个△A2A3E…按此做法继续下去,则第n+1个三角形中以An+1为顶点的底角度数是( )A. B. C. D.【答案】A【解答】解:∵在△CBA1中,∠B=40°,A1B=CB,∴∠BA1C==70°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×70°;同理可得∠EA3A2=()2×70°,∠FA4A3=()3×70°,∴第n+1个三角形中以An+1为顶点的底角度数是() n×70°.故选:A.填空题(本题共6题,每小题3分,共18分)。11.如图,在△ACD与△BCE中,AD与BE相交于点P,若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠APB的度数为 50° .【答案】50°.【解答】解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠ACD=∠BCE,∵∠ACE=55°,∠BCD=155°,∴∠ACD+∠BCE=∠BCD+∠ACE=155°+55°=210°,∴∠BCE=∠ACD=105°,∴∠ACB=∠BCE﹣∠ACE=105°﹣55°=50°,∵∠A=∠B,∠1=∠2,∴∠APB=∠ACB=50°,故答案为50°.12.在直线l上依次摆放着七个正方形(如图),已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4= 4 .【答案】4.【解答】解:如图,∵AB=BE,∠ACB=∠BDE=90°,∴∠ABC+∠BAC=90°,∠ABC+∠EBD=90°,∴∠BAC=∠EBD.在△ABC和△BED中,,∴△ABC≌△BED(AAS),∴BC=DE.∵S2=DE2,DE=BC,∴S2=BC2.∵S1=AC2,S2=BC2,AC2+BC2=AB2,AB2=1,∴S1+S2=1.同理S3+S4=3.则S1+S2+S3+S4=1+3=4.13.如图,C为线段AB上一动点(不与点A、B重合),在AB的上方分别作△ACD和△BCE,且AC=DC,BC=EC,∠ACD=∠BCE,AE、BD交于点P.有下列结论:①AE=DB;②∠APB=2∠ADC;③当AC=BC时,PC⊥AB;④PC平分∠APB.其中正确的是 ①②③④ .(把你认为正确结论的序号都填上)【答案】①②③④.【解答】解:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB,在△ACE和△DCB中,,∴△ACE≌△DCB(SAS),∴AE=DB,故①正确;∵△ACE≌△DCB,∴∠CAE=∠CDB,∵∠ACD=∠CDB+∠CBD,∴∠ACD=∠CAE+∠CBD,∵∠CAE+∠CBD+∠APB=180°,∴∠ACD+∠APB=180°,∵AC=DC,∴∠CAD=∠ADC,∵∠ACD+∠CAD+∠ADC=180°,∴∠ACD+2∠ADC=180°,∴∠APB=2∠ADC,故②正确;∵AC=BC,AC=DC,BC=EC,∴AC=BC=DC=EC,∴∠CAE=∠CBD,∴PA=PB,∵AC=BC,∴PC⊥AB,故③正确;如图,连接PC,过点C作CG⊥AE于G,CH⊥BD于H,∵△ACE≌△DCB,∴S△ACE=S△DCB,AE=BD,∴×AE×CG=×DB×CH,∴CG=CH,∵CG⊥AE,CH⊥BD,∴PC平分∠APB,故④正确,故答案为:①②③④.14.如图,已知△ABC的面积为16,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是 8 .【答案】8.【解答】解:延长AP交BC于D,∵BP平分∠ABC,∴∠ABP=∠DBP,∵AP⊥BP,∴∠APB=∠DPB=90°,在△APB和△DPB中,,∴△APB≌△DPB(ASA),∴AP=PD,∴S△APB=S△DPB,S△APC=S△DPC,∴△BPC的面积=×△ABC的面积=8,故答案为:8.15.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是 50 .【答案】见试题解答内容【解答】解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠FED=∠EFA=∠BGA=90°,∠EAF+∠BAG=90°,∠ABG+∠BAG=90°⇒∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG⇒△EFA≌△ABG∴AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=(6+4)×16﹣3×4﹣6×3=50.故答案为50.16.如图,∠MON=90°.△ABC中,AC=BC=10,AB=12,点A、B分别在边OM,ON上.当B在边ON上运动时,A随之在边OM上运动,△ABC的形状保持不变,在运动过程中,点C到点O的最大距离为 14 .【答案】14.【解答】解:作CD⊥AB于点D,连接OD,∵AC=BC=10,AB=12,∴点D为AB的中点,CD⊥AB,∴BD=8,∴CD==8,∵∠AOB=90°,AB=12,∴OD=6,∵OC≤OD+CD,∴当点O、D、C在同一直线上时,OC取得最大值,此时OC=OD+CD=6+8=14,故答案为:14.三、解答题(本题共5题,17题-20题,每题10分,21题12分)。17.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.已知AD=2cm,BC=5cm.(1)求证:FC=AD;(2)求AB的长.【答案】见试题解答内容【解答】(1)证明:∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等)∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,,∴△ADE≌△FCE(ASA),∴FC=AD(全等三角形的性质);(2)解:∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的对应边相等),∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF,∵AD=CF(已证),∴AB=BC+AD(等量代换)=5+2=7(cm).18.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=20,BE=4,求AB的长.【答案】见试题解答内容【解答】(1)证明:∵DE⊥AB,DF⊥AC,∴∠E=∠DFC=90°,∴在Rt△BED和Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴DE=DF,∵DE⊥AB,DF⊥AC,∴AD平分∠BAC;(2)解:∵∠AED=∠AFD=90°,AD=AD,DE=DF,∴Rt△ADE≌Rt△ADF(HL)∴AE=AF,∵AC=20,CF=BE=4,∴AE=AF=20﹣4=16,∴AB=AE﹣BE=16﹣4=12.19.【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是 B .A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是 C .A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC=BF.【答案】见试题解答内容【解答】(1)解:∵在△ADC和△EDB中,∴△ADC≌△EDB(SAS),故选B;(2)解:∵由(1)知:△ADC≌△EDB,∴BE=AC=6,AE=2AD,∵在△ABE中,AB=8,由三角形三边关系定理得:8﹣6<2AD<8+6,∴1<AD<7,故选C.(3)证明:延长AD到M,使AD=DM,连接BM,∵AD是△ABC中线,∴CD=BD,∵在△ADC和△MDB中∴△ADC≌△MDB,∴BM=AC,∠CAD=∠M,∵AE=EF,∴∠CAD=∠AFE,∵∠AFE=∠BFD,∴∠BFD=∠CAD=∠M,∴BF=BM=AC,即AC=BF.20.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠EDC= 25 °,∠AED= 65 °;(2)线段DC的长度为何值时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,求∠BDA的度数;若不可以,请说明理由.【答案】见试题解答内容【解答】解:(1)∵AB=AC,∴∠C=∠B=40°,∵∠ADE=40°,∠BDA=115°,∵∠EDC=180°﹣∠ADB﹣∠ADE=25°,∴∠AED=∠EDC+∠C=25°+40°=65°,故答案为:25;65;(2)当DC=2时,△ABD≌△DCE,理由:∵AB=2,DC=2,∴AB=DC,∵∠C=40°,∴∠DEC+∠EDC=140°,∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,①当DA=DE时,∠DAE=∠DEA=70°,∴∠BDA=∠DAE+∠C=70°+40°=110°;②当AD=AE时,∠AED=∠ADE=40°,∴∠DAE=100°,此时,点D与点B重合,不合题意;③当EA=ED时,∠EAD=∠ADE=40°,∴∠BDA=∠EAD+∠C=40°+40°=80°;综上所述,当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.21.如图1,△ABE是等腰三角形,AB=AE,∠BAE=45°,过点B作BC⊥AE于点C,在BC上截取CD=CE,连接AD、DE并延长AD交BE于点P;(1)求证:AD=BE;(2)试说明AD平分∠BAE;(3)如图2,将△CDE绕着点C旋转一定的角度,那么AD与BE的位置关系是否发生变化,说明理由.【答案】见试题解答内容【解答】解:(1)∵BC⊥AE,∠BAE=45°,∴∠CBA=∠CAB,∴BC=CA,在△BCE和△ACD中,,∴△BCE≌△ACD(SAS),∴AD=BE.(2)∵△BCE≌△ACD,∴∠EBC=∠DAC,∵∠BDP=∠ADC,∴∠BPD=∠DCA=90°,∵AB=AE,∴AD平分∠BAE.(3)AD⊥BE不发生变化.如图2,∵△BCE≌△ACD,∴∠EBC=∠DAC,∵∠BFP=∠AFC,∴∠BPF=∠ACF=90°,∴AD⊥BE.
相关资料
更多