广东省佛山市南海外国语学校2023-2024学年八年级下学期数学期中试题
展开第Ⅰ卷 客观题
第Ⅰ卷的注释
一、选择题(共10小题,每小题3分)(共10题;共30分)
1. 为了节能减排,国家积极倡导使用新能源汽车,新能源汽车发展也取得了巨大成就.下列新能源汽车的车标既是中心对称图形又是轴对称图形的是( )
2. 函数中,自变量x的取值范围是( )
3. 如图,数轴上的点A与点B所表示的数分别为a , b , 则下列不等式成立的是( )
4. 如图①是一把园林剪刀,把它抽象为图②,其中 , 若剪刀张开的角为40°,则的度数是( )
5. 下列从左边到右边的变形,属于因式分解的是( )
6. 如图,函数和的图象交于点A,则不等式的解集是( )
7. 如图,三座商场分别坐落在A、B、C所在位置,现要规划一个地铁站,使得该地铁站到三座商场的距离相等,该地铁站应建在( )
8. 如图,在平面直角坐标系中,将四边形ABCD先向下平移,再向右平移得到四边形A'B'C'D' . 若点A、B、A'的坐标分别为(-3,5),(-4,3),(3,3),则点B'的坐标为( )
9. 电商经济的蓬勃发展,物流配送体系建设的不断完善,推动我国快递行业迅速崛起.某快递公司的甲、乙两名快递员从公司出发分别到距离公司2400米和1000米的两地派送快件,甲快递员的速度是乙快递员速度的1.倍,乙快递员比甲快递员提前10分钟到达派送地点.若设乙快递员的速度是x米/分,则下列方程正确的是( )
10. 已知可以被10到20之间的某两个整数整除,则这两个数是( )
二、填空题(共5小题,每小题3分)(共5题;共15分)
11. 因式分解: =____________________.
12. 如图,把绕点C顺时针旋转35°,得到 , A'B'交AC于点D , 若 , 则的度数为____________________.
13. 不等式组的解集是 , 那么m的取值范围是____________________.
14. 若关于x的分式方程 有增根,则a的值为____________________.
15. 如图,中, , 面积65,AD是的角平分线,E是AD上的动点,F是AB边上的动点,则的最小值为____________________.
第Ⅱ卷 主观题
第Ⅱ卷的注释
三、解答题(共10小题,16-20每小题5分,21-22每小题8分,23题10分,24-25每小题12分)(共10题;共75分)
16. 分解因式: .
17. 解不等式组 并把解集在数轴上表示出来
18. 解方程: .
19. 如图,已知为等腰直角三角形, , F为AB延长线上一点,点E在BC上,且 . 求证:是等腰直角三角形.
20. 如图,方格纸中每个小正方形的边长都是1个单位长度,在方格纸中建立如图所示的平面直角坐标系,的顶点都在格点上.
(1) 将向右平移6个单位长度得到 , 请画出;
(2) 画出关于点O的中心对称图形;
(3) 若将绕某一点旋转可得到 , 请直接写出旋转中心的坐标:____________________.
21. 开学初,小芳和小亮去学校商店购买学习用品,已知每支钢笔的价格比每本笔记本的价格少2元,小芳用30元钱购买钢笔的数量是小亮用25元钱购买笔记本数量的2倍.
(1) 求每支钢笔和每支笔记本的价格:
(2) 一模后,班主任再次购买上述价格的钢笔和笔记本共50件作为奖品,奖励给一模中表现突出和进步的同学,总费用不超过200元.请问至少要买多少支钢笔?
22. 学习了公式法后,老师向同学们提出了如下问题:
①将多项式因式分解:
②求多项式的最小值.
请你运用上述方法解决下列问题:
(1) 将多项式因式分解;
(2) 求多项式的最小值:
23. A、B两家旅行社推出家庭旅游优惠活动,两家旅行社的票价均为每人90元,但优惠的办法不同.A旅行社的优惠办法是:全家有一人购全票,其余的人半价优惠;B旅行社的优惠办法是:全家每人均按票价优惠。设某一家庭共有x人,A、B两家旅行社的收费分别是元,元.
(1) 请直接写出 , 与x之间的函数关系式.
(2) 若小红家共有5人一起去旅游,请通过计算说明小红家选择哪家旅行社费用较低.
(3) 请根据不同家庭的人数情况,说明选择哪家旅行社费用较低.
24. 阅读理解
阅读下面的材料:把一个分式写成两个分式的和叫作把这个分式表示成“部分分式”.例:将分式表示成部分分式.解:设 , 将等式右边通分,得 , 依据题意,得 , 解得 , 所以 . 请你运用上面所学到的方法,解决下面的问题:
(1) (A , B为常数),则____________________,____________________;
(2) 一个容器装有1L水,按照如下要求把水倒出:第1次倒出 , 第2次倒出的水量是的 , 第3次倒出的水量是的 , 第4次倒出的水量是的⋯第n次倒出的水量是的…按照这种倒水的方法,请说明这,1L的水是否能倒完?如果能,多少次才能倒完?如果不能,请说明理由;
(3) 按照(2)的条件,现在重新开始实验,按照如下要求把水倒出:第1次倒出 , 第2次倒出的水量是 , 第3次倒出的水量是 , 第4次倒出的水量是 , 请问经过多少次操作后,杯内剩余水量能否变成原来水量的?试说明理由.
25. 综合与实践探究
【问题背景】学习三角形旋转之后,八1班各学习小组打算用两个大小不同的等腰直角三角形通过、旋转变换设计本组的lg,小鸣在设计lg的过程中发现两个三角形在旋转过程中,某些边和角存在一定的关系。因此他和同学一起对这个问题进行了数学探究。
已知和都是等腰直角三角形,且
(1) 【初步探究】小鸣将绕点A在平面内自由旋转,连接BD、CE后,他发现这两条线段存在着一定的数量关系,如图1,请探究线段BD、CE的数量关系,并说明理由。
(2) 【深入探究】若 , 在旋转过程中,当点D、点E和BC的中点O三点共线时,如图2,请探究线段BD、DO和OE的数量关系,并说明理由。
(3) 【应用探究】如图2,在(2)的条件下,若 , , 则____________________(直接写出结果)
(4) 【拓展探究】如图3, , , , 则____________________(直接写出结果) A .
B .
C .
D .
A .
B . 且
C .
D . 且
A .
B .
C .
D .
A . 40°
B . 50°
C . 60°
D . 70°
A .
B .
C .
D .
A .
B .
C .
D .
A . 三角形三条中线的交点
B . 三角形三条高所在直线的交点
C . 三角形三个内角的角平分线的交点
D . 三角形三条边的垂直平分线的交点
A . (1,2)
B . (2,1)
C . (1,4)
D . (4,1)
A .
B .
C .
D .
A . 12,14
B . 13,15
C . 14,16
D . 15,17
①
②由①,得 , 因为 , 所以 . 所以,当时,的值最小,且最小值为-1.
广东省佛山市南海外国语学校2023-2024学年九年级下学期月考数学试题(原卷版+解析版): 这是一份广东省佛山市南海外国语学校2023-2024学年九年级下学期月考数学试题(原卷版+解析版),文件包含广东省佛山市南海外国语学校2023-2024学年九年级下学期月考数学试题原卷版docx、广东省佛山市南海外国语学校2023-2024学年九年级下学期月考数学试题解析版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
41,广东省佛山市南海外国语学校2023-2024学年八年级上学期第一次月考数学试题(): 这是一份41,广东省佛山市南海外国语学校2023-2024学年八年级上学期第一次月考数学试题(),共5页。试卷主要包含了25的算术平方根是,下列各组数中,是勾股数的是,在6,下列说法中,错误的是,若是最简二次根式,则的值可能是,下列各式中,正确的是等内容,欢迎下载使用。
广东省佛山市南海外国语学校2023-2024学年九上数学期末质量跟踪监视试题含答案: 这是一份广东省佛山市南海外国语学校2023-2024学年九上数学期末质量跟踪监视试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法中,不正确的是,一元二次方程的正根的个数是等内容,欢迎下载使用。