2024年河南省周口市沈丘县押题密卷联考中考三模数学试题
展开
这是一份2024年河南省周口市沈丘县押题密卷联考中考三模数学试题,文件包含答案docx、数学docx等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。
6. C 【解析】∵四边形 ABCD 是菱形,周长为32,∴AB∥CD,AB=BC=CD=AD=8,∵M是菱形ABCD边 BC 的中点,MN∥AB,∴Q是 AC 的中点,∴QM 是△ABC 中位线,∴QM= 12AB=4,∵MN=5,∴QN=MN-QM=5--4=1,∵MN∥AB,∴MN∥CD,
∴N是 AE的中点,∴QN 是△ACE的中位线,
∴CE=2QN=2,∴DE=CD-CE=8-2=6.故选:C.
7. B 8. C
9. A 【解析】∵ y=12ax2+1−ax−1(a0,∴抛物线与x轴有两个交点,∴顶点M一定在第一象限.故选:A.
10. A 【解析】如图,连接 BE,AE,CE,BE 交AC 于点G,由正六边形的对称性可得 BE⊥AC,易证△ABC≌△CDE≌△AFE(SAS),∴△ACE为等边三角形,GE 为AC 边上的高,∵动点 P 从正六边形的点A 出发,沿 A→F→E→D→C以1cm/s的速度匀速运动,∴当点 P 运动到点E 时△ACP 的面积y 取最大值3√₃,设AG=CG=a cm,则AC=AE =CE=2acm,GE=3acm,∴2a×3a÷ 2=33,∴a2=3,∴a=3cm或 a=−3(舍),∵正六边形的每个内角均为 120°, ∴∠ABG=12×120∘=60∘,∴在 Rt△ABG中, AGAB=sin60∘,∴3AB=32,∴AB=2cm∴正六边形的边长为 2 cm.故选:A.
11. y=x(答案不唯一) 12.a≥-3
13.2/3【解析】画树状图如图:
由树状图知,共有6种等可能结果,两次摸出的小球数字和为奇数有4种,则两次摸出的小球数字和为奇数的概.率 =46=23,故答案为: 23.
14.3π2−934 【解析】在 Rt△ABC 中,∠C=90°,AB=6,BC=3.∴∠A=30°,∠ABC=60°,连接 CE,∵CE=CB,∠ABC= 60°,∴△BCE是正三角形,∴BC=BE=CE=3, 3×3×32=3π2−934.故答案为:3π/2 −934.
15.1 或 4−23 【解析】①如图1,点D'恰好落在直角三角形纸片的AB 边上时,设A'C 交AB 边于点E,由题意,得△ADC≌△A'DC≌△A'D'C,A'C 垂直平分线段 DD'.则∠D'A'C=∠DA'C=∠A=60°,A'C=AC=2. ∵∠ACB=90°,∠B =30°,AC=2, ∴BC=AC⋅tanA=2×tan60∘=23.AB= 2AC=4,:SABC=12AC⋅BC=12AB.CH k,∴CE=3,∴A'E'=A'C−CE=2− 3.在 Rt△A'D'E中, ∴cs∠D'A'E=A'EA'D', ∴A'EA'D'=12,∴A'D'=2A'E=4−23.②如图2,点 D'恰好落在直角三角形纸片的 BC 边上时,有△ADC≌△A'DC≌△A'D'C, ∠ACD=∠A'CD=∠A'CD'=13∠ACB=30°;则. ∠D'A'C=∠DA'C=∠A=60°,A'C =AC=2.∵∠D'A'C=60°,∠A'CD'=30° ∴ZA'D'C=90∘,∴A'D'=12A'C=12×2=1.综上,线段A'D'的长为:1或 4−23.故答案为:1 或 4−23.
16.解:(1)原式=-4×2-3+9+1=-8-3+9+1=-1;
(2)原式 =x−1x⋅xx−12=1x−1.
17.解:(1)∵二班良好这一组成绩的中位数是第5、6个数据的平均数,∴中位数 =73+742=73.5,
∵二班良好这一组成绩出现最多的是73,
∴众数是73;
(2)成绩是 76分的学生,在二班的名次更好,理由如下:
∵一班成绩的中位数是76,一班没有3人的成绩相同,
∴一班成绩是76分的学生,名次最好可能是 20名,
∵二班成绩是 76分的学生,名次是16名,
∴成绩是76分的学生,在二班的名次更好;
(3)一,理由如下:
∵二班成绩的中位数是73.5,一班的中位数是 76,
∴一班成绩的中位数大于二班成绩的中位数,
∵二班的优秀率为 3+940×100%=30%,
∴一班的优秀率大于二班的优秀率,
∴一班整体成绩更好.
18.(1)如图,AD 即为所求;
(2)过点 D 作DH⊥AB 于点 H,
∴DH=3,
∵AD是∠BAC的平分线,∠C=90°,
∴DC=DH=3.
∵∠C=90°,∠BAC=60°,
∴∠B=30°.
在 Rt△BDH中,∠B=30°,
∴BD=2DH=23,
∴BC=CD+BD=3+23=33.
19.解:(1)∵四边形OABC是边长为2的正方形,∴点 B的坐标是(2,2),
∵反比例函数 y=kxx0)的图象经过点 B,
∴k=2×2=4,
∴反比例函数的解析式为 y=4xx0);
(2)作 DE⊥x轴于点E,
∵BA⊥x轴, ∴SDOE=SAOB=12×4=2,设点D(m,⁴/m),则 OE=m,DE=4m,
∵S△OBD=3,
∴SOBD=SAOB+S梯形ABDE−SDOE=S梯形ABDE =3,
∴122+4mm−2=3,
整理,得 m²−3m−4=0,
解得m=4或m=--1(舍去),
∴点 D的坐标是(4,1),
设直线BD的解析式为y=ax+b,
把点 B,D的坐标代入,得
2a+b=2,4a+b=1,解得 a=−12,b=3,
∴直线 BD的函数解析式为 y=−12x+3.
20.解:如图,过点O作OD⊥BC,交 BC的延长线于点 D,过点O作OE⊥AB,垂足为E,
由题意,得AO=8×5=40(米),OC=4×5=20(米),OE=BD,OE∥BD,
∴∠EOC=∠OCD=45°,
∵∠AOC=75°,∴∠AOE=∠AOC--∠EOC= 75°- 45°=30°,
在 Rt△OCD 中,
CD=OC⋅cs45∘=20×22=102米),
在 Rt△AOE 中,
OE=AO⋅cs30∘=40×32=203 米),
∴BD=OE=20 3(米),
∴BC=BD−CD=203−102≈21(米),答:小李到古塔的水平距离即 BC的长约为21米.
21.解:(1)设《周髀算经》的单价是x 元,则《孙子算经》的单价是 34x元,
根据题意,得 6003x−600x=5,解得x=40,
经检验,x=40 是所列方程的解,且符合题意,
∴34x=34×40=30.
∴《孙子算经》的单价是 30 元,《周髀算经》的单价是 40元;
(2)设购买m本《孙子算经》,则购买(80-m)本《周髀算经》,
根据题意,得 80−m≥12m,解得 m≤1603.
设购买这两种图书共花费ω元,则ω=30×
0.8m+40×0.8(80-m),
∴w=-8m+2 560,
∵--8
相关试卷
这是一份2024年河南省周口市沈丘县三校联考中考二模数学试题(原卷版+解析版),文件包含2024年河南省周口市沈丘县三校联考中考二模数学试题原卷版docx、2024年河南省周口市沈丘县三校联考中考二模数学试题解析版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
这是一份2024年河南省周口市沈丘县几校联考中考二模数学试题(原卷版+解析版),文件包含2024年河南省周口市沈丘县几校联考中考二模数学试题原卷版docx、2024年河南省周口市沈丘县几校联考中考二模数学试题解析版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
这是一份2024年河南省周口市沈丘县三校联考中考二模数学试题,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。