所属成套资源:2024年中考数学二次函数压轴题专题特训练习(学生版+解析)
2024年中考数学二次函数压轴题专题06四边形的面积问题(学生版+解析)
展开
这是一份2024年中考数学二次函数压轴题专题06四边形的面积问题(学生版+解析),共22页。试卷主要包含了知识导航,典例精析,中考真题演练等内容,欢迎下载使用。
除了关于三角形的各种面积问题之外,四边形问题也是中考题中常见的一种问法,鉴于四边形一般是普普通通的四边形,因此问题一般也是普普通通的问题,本文分享一点关于四边形面积的题目.
思考:如何求一个普通的四边形的面积?
解法也很普通,连对角线分割为两个三角形即可求得面积,至于三角形面积参考铅垂法.
二、典例精析
例一、
已知抛物线经过点、,与轴交于点.
(1)求这条抛物线的解析式;
(2)如图,点是第三象限内抛物线上的一个动点,当四边形的面积最大时,求点的坐标.
【分析】
(1);
(2)此处四边形ABPC并非特殊四边形,所以可以考虑连接对角线将四边形拆为两个三角形求面积.
若连接AP,则△ABP和△APC均为动三角形,非最佳选择;
若连接BC,可得定△ABC和动△BPC,只要△BPC面积最大,四边形ABPC的面积便最大.
考虑A(2,0)、B(-4,0)、C(0,-4),故,
接下来求△BPC的面积,设P点坐标为,
连接BC,则直线BC的解析式为:y=-x-4
过点P作PQ⊥x轴交BC于点Q,则Q点坐标为(m,-m-4),
故,
当m=-2时,PQ取到最大值2,此时△BPC面积最大,四边形ABPC面积最大.
此时P点坐标为(-2,-4).
例二、
已知抛物线的对称轴是直线,与轴相交于,两点(点在点右侧),与轴交于点.
(1)求抛物线的解析式和,两点的坐标;
(2)如图,若点是抛物线上、两点之间的一个动点(不与、重合),是否存在点,使四边形的面积最大?若存在,求点的坐标及四边形面积的最大值;若不存在,请说明理由;
【分析】
(1)抛物线:
点A坐标为(-2,0),点B坐标为(8,0).
(2)显然将四边形PBOC拆为△BOC和△PBC,点C坐标为(0,4),
故,
设P点坐标为,
根据B、C坐标可得BC的解析式为
过点P作PQ⊥x轴交BC于点Q,则Q点坐标为,
故,
当m=4时,PQ取到最大值4,
,
故四边形PBOC的最大面积为32,此时P点坐标为(4,6).
三、中考真题演练
1.(2023·海南·中考真题)如图1,抛物线交x轴于A,两点,交y轴于点.点P是抛物线上一动点.
(1)求该抛物线的函数表达式;
(2)当点P的坐标为时,求四边形的面积;
4.(2023·湖南常德·中考真题)如图,二次函数的图象与x轴交于,两点,与y轴交于点C,顶点为D.O为坐标原点,.
(1)求二次函数的表达式;
(2)求四边形的面积;
5.(2023·山西·中考真题)如图,二次函数的图象与轴的正半轴交于点A,经过点A的直线与该函数图象交于点,与轴交于点C.
(1)求直线的函数表达式及点C的坐标;
(2)点是第一象限内二次函数图象上的一个动点,过点作直线轴于点,与直线交于点D,设点的横坐标为.
①当时,求的值;
②当点在直线上方时,连接,过点作轴于点,与交于点,连接.设四边形的面积为,求关于的函数表达式,并求出S的最大值.
6.(2023·四川广安·中考真题)如图,二次函数的图象交轴于点,交轴于点,点的坐标为,对称轴是直线,点是轴上一动点,轴,交直线于点,交抛物线于点.
(1)求这个二次函数的解析式.
(2)若点在线段上运动(点与点、点不重合),求四边形面积的最大值,并求出此时点的坐标.
7.(2023·安徽·中考真题)在平面直角坐标系中,点是坐标原点,抛物线经过点,对称轴为直线.
(1)求的值;
(2)已知点在抛物线上,点的横坐标为,点的横坐标为.过点作轴的垂线交直线于点,过点作轴的垂线交直线于点.
(ⅰ)当时,求与的面积之和;
(ⅱ)在抛物线对称轴右侧,是否存在点,使得以为顶点的四边形的面积为?若存在,请求出点的横坐标的值;若不存在,请说明理由.
专题06 四边形的面积问题
一、知识导航
除了关于三角形的各种面积问题之外,四边形问题也是中考题中常见的一种问法,鉴于四边形一般是普普通通的四边形,因此问题一般也是普普通通的问题,本文分享一点关于四边形面积的题目.
思考:如何求一个普通的四边形的面积?
解法也很普通,连对角线分割为两个三角形即可求得面积,至于三角形面积参考铅垂法.
二、典例精析
例一、
已知抛物线经过点、,与轴交于点.
(1)求这条抛物线的解析式;
(2)如图,点是第三象限内抛物线上的一个动点,当四边形的面积最大时,求点的坐标.
【分析】
(1);
(2)此处四边形ABPC并非特殊四边形,所以可以考虑连接对角线将四边形拆为两个三角形求面积.
若连接AP,则△ABP和△APC均为动三角形,非最佳选择;
若连接BC,可得定△ABC和动△BPC,只要△BPC面积最大,四边形ABPC的面积便最大.
考虑A(2,0)、B(-4,0)、C(0,-4),故,
接下来求△BPC的面积,设P点坐标为,
连接BC,则直线BC的解析式为:y=-x-4
过点P作PQ⊥x轴交BC于点Q,则Q点坐标为(m,-m-4),
故,
当m=-2时,PQ取到最大值2,此时△BPC面积最大,四边形ABPC面积最大.
此时P点坐标为(-2,-4).
例二、
已知抛物线的对称轴是直线,与轴相交于,两点(点在点右侧),与轴交于点.
(1)求抛物线的解析式和,两点的坐标;
(2)如图,若点是抛物线上、两点之间的一个动点(不与、重合),是否存在点,使四边形的面积最大?若存在,求点的坐标及四边形面积的最大值;若不存在,请说明理由;
【分析】
(1)抛物线:
点A坐标为(-2,0),点B坐标为(8,0).
(2)显然将四边形PBOC拆为△BOC和△PBC,点C坐标为(0,4),
故,
设P点坐标为,
根据B、C坐标可得BC的解析式为
过点P作PQ⊥x轴交BC于点Q,则Q点坐标为,
故,
当m=4时,PQ取到最大值4,
,
故四边形PBOC的最大面积为32,此时P点坐标为(4,6).
三、中考真题演练
1.(2023·海南·中考真题)如图1,抛物线交x轴于A,两点,交y轴于点.点P是抛物线上一动点.
(1)求该抛物线的函数表达式;
(2)当点P的坐标为时,求四边形的面积;
【分析】(1)利用待定系数法求解即可;
(2)连接,过点P作于点E,利用点的坐标表示出线段、、、、的长度,再根据,进行计算即可;
【详解】(1)解:由题意可得,,
解得,
∴抛物线的解析式为;
(2)解:连接,过点P作于点E,如图,
∵点P的坐标为,
∴,,
令,则,
解得或,
∴,
∴,
∵,,
∴,,
∴,
;
2.(2023·青海·中考真题)如图,二次函数的图象与轴相交于点和点,交轴于点.
(1)求此二次函数的解析式;
(2)设二次函数图象的顶点为,对称轴与轴交于点,求四边形的面积(请在图1中探索);
【详解】(1)解:由题意得,
,
∴,
∴;
(2)解:如图,连接,
∵,
∴,
∴,,
由得,,
∴,
∴;
3.(2023·辽宁锦州·中考真题)如图,抛物线交轴于点和,交轴于点,顶点为.
(1)求抛物线的表达式;
(2)若点在第一象限内对称右侧的抛物线上,四边形的面积为,求点的坐标;
【详解】(1)解:∵抛物线经过点,,
∴,解得.
∴抛物线的表达式为:.
(2)解:方法一:如下图,连接,过点作轴交于点.
∵
,
∴.
令中,则,
解得或,
∴,
设直线为,
∵过点,,,
∴,
解得,
∴直线的表达式为:.
设,,
∴
.
∴
.
∵,
∴.
整理得,解得.
∴.
方法二:
如下图,
抛物线的对称轴与轴交于点,过点作轴于点,
设,
∴,
∴
.
∵,
∴.
整理得,解得.
∴.
4.(2023·湖南常德·中考真题)如图,二次函数的图象与x轴交于,两点,与y轴交于点C,顶点为D.O为坐标原点,.
(1)求二次函数的表达式;
(2)求四边形的面积;
【详解】(1)∵二次函数的图象与轴交于两点.
∴设二次函数的表达式为
∵,
∴,即的坐标为
则,得
∴二次函数的表达式为;
(2)
∴顶点的坐标为
过作于,作于,
四边形的面积
;
是将所学的知识灵活运用.
5.(2023·山西·中考真题)如图,二次函数的图象与轴的正半轴交于点A,经过点A的直线与该函数图象交于点,与轴交于点C.
(1)求直线的函数表达式及点C的坐标;
(2)点是第一象限内二次函数图象上的一个动点,过点作直线轴于点,与直线交于点D,设点的横坐标为.
①当时,求的值;
②当点在直线上方时,连接,过点作轴于点,与交于点,连接.设四边形的面积为,求关于的函数表达式,并求出S的最大值.
【答案】(1),点的坐标为
(2)①2或3或;②,S的最大值为
【分析】(1)利用待定系数法可求得直线的函数表达式,再求得点C的坐标即可;
(2)①分当点在直线上方和点在直线下方时,两种情况讨论,根据列一元二次方程求解即可;
②证明,推出,再证明四边形为矩形,利用矩形面积公式得到二次函数的表达式,再利用二次函数的性质即可求解.
【详解】(1)解:由得,当时,.
解得.
∵点A在轴正半轴上.
∴点A的坐标为.
设直线的函数表达式为.
将两点的坐标分别代入,
得,
解得,
∴直线的函数表达式为.
将代入,得.
∴点C的坐标为;
(2)①解:点在第一象限内二次函数的图象上,且轴于点,与直线交于点,其横坐标为.
∴点的坐标分别为.
∴.
∵点的坐标为,
∴.
∵,
∴.
如图,当点在直线上方时,.
∵,
∴.
解得.
如图2,当点在直线下方时,.
∵,
∴.
解得,
∵,
∴.
综上所述,的值为2或3或;
②解:如图3,由(1)得,.
∵轴于点,交于点,点B的坐标为,
∴.
∵点在直线上方,
∴.
∵轴于点,
∴.
∴,,
∴.
∴.
∴.
∴.
∴.
∴四边形为平行四边形.
∵轴,
∴四边形为矩形.
∴.
即.
∵,
∴当时,S的最大值为.
【点睛】本题属于二次函数综合题,考查了二次函数、一次函数、等腰三角形、矩形、勾股定理、相似三角形等知识点,第二问难度较大,需要分情况讨论,画出大致图形,用含m的代数式表示出是解题的关键.
6.(2023·四川广安·中考真题)如图,二次函数的图象交轴于点,交轴于点,点的坐标为,对称轴是直线,点是轴上一动点,轴,交直线于点,交抛物线于点.
(1)求这个二次函数的解析式.
(2)若点在线段上运动(点与点、点不重合),求四边形面积的最大值,并求出此时点的坐标.
【分析】(1)先根据二次函数对称轴公式求出,再把代入二次函数解析式中进行求解即可;
(2)先求出,,则,,求出直线的解析式为,设,则,,则;再由得到,故当时,最大,最大值为,此时点P的坐标为;
【详解】(1)解:∵二次函数的对称轴为直线,
∴,
∴,
∵二次函数经过点,
∴,即,
∴,
∴二次函数解析式为;
(2)解:∵二次函数经过点,且对称轴为直线,
∴,
∴,
∵二次函数与y轴交于点C,
∴,
∴;
设直线的解析式为,
∴,
∴,
∴直线的解析式为,
设,则,,
∴;
∵,
∴
,
∵,
∴当时,最大,最大值为,
∴此时点P的坐标为;
7.(2023·安徽·中考真题)在平面直角坐标系中,点是坐标原点,抛物线经过点,对称轴为直线.
(1)求的值;
(2)已知点在抛物线上,点的横坐标为,点的横坐标为.过点作轴的垂线交直线于点,过点作轴的垂线交直线于点.
(ⅰ)当时,求与的面积之和;
(ⅱ)在抛物线对称轴右侧,是否存在点,使得以为顶点的四边形的面积为?若存在,请求出点的横坐标的值;若不存在,请说明理由.
【答案】(1)
(2)(ⅰ);(2)
【分析】(1)待定系数法求解析式即可求解;
∴当时,与的面积之和为,
(ⅱ)当点在对称右侧时,则,
∴,
当时,,
∴,
∴,
解得:,
当时,,
∴,
∴,
解得:(舍去)或(舍去)
综上所述,.
【点睛】本题考查了二次函数综合问题,面积问题,待定系数法求二次函数解析式,分类讨论,熟练掌握二次函数的性质是解题的关键.
相关试卷
这是一份专题07 二次函数-面积最大值问题(学生版)-拔尖2023中考数学压轴题(全国通用),共8页。试卷主要包含了三角形面积的最大值,四边形面积的最大值,图形面积和、差、比的最大值等内容,欢迎下载使用。
这是一份专题5二次函数与面积最值定值问题-(学生版)-拔尖2023中考数学压轴题突破(全国通用),共16页。
这是一份人教版九年级数学上册同步压轴题专题06二次函数中的面积问题(原卷版+解析),共17页。试卷主要包含了面积最值问题,面积定值问题等内容,欢迎下载使用。