所属成套资源:2024年中考数学二次函数压轴题专题特训练习(学生版+解析)
2024年中考数学二次函数压轴题专题12菱形的存在性问题(学生版+解析)
展开
这是一份2024年中考数学二次函数压轴题专题12菱形的存在性问题(学生版+解析),共33页。试卷主要包含了知识导航,典例精析,中考真题演练等内容,欢迎下载使用。
作为一种特殊的平行四边形,我们已经知道可以从以下几种方式得到菱形:
(1)有一组邻边相等的平行四边形菱形;
(2)对角线互相垂直的平行四边形是菱形;
(3)四边都相等的四边形是菱形.
坐标系中的菱形存在性问题也是依据以上去得到方法.和平行四边形相比,菱形多一个“对角线互相垂直”或“邻边相等”,但这两者其实是等价的,故若四边形ABCD是菱形,则其4个点坐标需满足:
考虑到互相垂直的两条直线斜率之积为1在初中并不适合直接用,故取两邻边相等.
即根据菱形的图形性质,我们可以列出关于点坐标的3个等式,
故菱形存在性问题点坐标最多可以有3个未知量,与矩形相同.
因此就常规题型而言,菱形存在性至少有2个动点,多则有3个动点,可细分如下两大类题型:
(1)2个定点+1个半动点+1个全动点
(2)1个定点+3个半动点
解决问题的方法也可有如下两种:
思路1:先平四,再菱形
设点坐标,根据平四存在性要求列出“A+C=B+D”(AC、BD为对角线),再结合一组邻边相等,得到方程组.
思路2:先等腰,再菱形
在构成菱形的4个点中任取3个点,必构成等腰三角形,根据等腰存在性方法可先确定第3个点,再确定第4个点.
看个例子:
如图,在坐标系中,A点坐标(1,1),B点坐标为(5,4),点C在x轴上,点D在平面中,求D点坐标,使得以A、B、C、D为顶点的四边形是菱形.
思路1:先平四,再菱形
设C点坐标为(m,0),D点坐标为(p,q).
(1)当AB为对角线时,由题意得:(AB和CD互相平分及AC=BC)
,解得:
(2)当AC为对角线时,由题意得:(AC和BD互相平分及BA=BC)
,解得:或
(3)当AD为对角线时,由题意得:
,解得:或
思路2:先等腰,再菱形
先求点C,点C满足由A、B、C构成的三角形一定是等腰三角形,用等腰存在性问题的方法先确定C,再确定D点.
(1)当AB=AC时,
C点坐标为,对应D点坐标为;
C点坐标为,对应D点坐标为.
(2)当BA=BC时,
C点坐标为(8,0),对应D点坐标为(4,-3);
C点坐标为(2,0),对应D点坐标为(-2,-3).
(3)AC=BC时,
C点坐标为,D点坐标为.
以上只是两种简单的处理方法,对于一些较复杂的题目,还需具体问题具体分析,或许有更为简便的方法.
二、典例精析
如图,抛物线与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连接AC和BC.
(1)求抛物线的解析式;
(2)若点M是y轴上的动点,在坐标平面内是否存在点N,使以点A、C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
【分析】
(1)抛物线:;
(2)先考虑M点位置,即由A、C、M三点构成的三角形是等腰三角形:
①当CA=CM时,
即CM=CA=,M点坐标为、,
对应N点坐标为、.
②当AC=AM时,
即AM=AC=,M点坐标为(0,6),
对应N点坐标为(2,0).
③当MA=MC时,
勾股定理可求得M点坐标为,
对应N点坐标为.
综上,N点坐标为、、(2,0)、.
如下图依次从左到右.
三、中考真题演练
1.(2023·西藏·中考真题)在平面直角坐标系中,抛物线与x轴交于,两点,与y轴交于点C.
(1)求抛物线的解析式;
(3)如图乙,点P为抛物线对称轴上一点,是否存在P、Q两点使以点A,C,P,Q为顶点的四边形是菱形?若存在,求出P、Q两点的坐标,若不存在,请说明理由.
4.(2023·湖南·中考真题)如图,在平面直角坐标系中,抛物线经过点和点,且与直线交于两点(点在点的右侧),点为直线上的一动点,设点的横坐标为.
(1)求抛物线的解析式.
(3)抛物线与轴交于点,点为平面直角坐标系上一点,若以为顶点的四边形是菱形,请求出所有满足条件的点的坐标.
5.(2023·四川广安·中考真题)如图,二次函数的图象交轴于点,交轴于点,点的坐标为,对称轴是直线,点是轴上一动点,轴,交直线于点,交抛物线于点.
(1)求这个二次函数的解析式.
(3)若点在轴上运动,则在轴上是否存在点,使以、为顶点的四边形是菱形?若存在,请直接写出所有满足条件的点的坐标;若不存在,请说明理由.
6.(2023·重庆·中考真题)如图,在平面直角坐标系中,抛物线过点,且交x轴于点,B两点,交y轴于点C.
(1)求抛物线的表达式;
(2)点P是直线上方抛物线上的一动点,过点P作于点D,过点P作y轴的平行线交直线于点E,求周长的最大值及此时点P的坐标;
(3)在(2)中周长取得最大值的条件下,将该抛物线沿射线方向平移个单位长度,点M为平移后的抛物线的对称轴上一点.在平面内确定一点N,使得以点A,P,M,N为顶点的四边形是菱形,写出所有符合条件的点N的坐标,并写出求解点N的坐标的其中一种情况的过程.
7.(2023·四川达州·中考真题)如图,抛物线过点.
(1)求抛物线的解析式;
(3)若点是抛物线对称轴上一动点,点为坐标平面内一点,是否存在以为边,点为顶点的四边形是菱形,若存在,请直接写出点的坐标;若不存在,请说明理由.
专题12 菱形的存在性问题
一、知识导航
作为一种特殊的平行四边形,我们已经知道可以从以下几种方式得到菱形:
(1)有一组邻边相等的平行四边形菱形;
(2)对角线互相垂直的平行四边形是菱形;
(3)四边都相等的四边形是菱形.
坐标系中的菱形存在性问题也是依据以上去得到方法.和平行四边形相比,菱形多一个“对角线互相垂直”或“邻边相等”,但这两者其实是等价的,故若四边形ABCD是菱形,则其4个点坐标需满足:
考虑到互相垂直的两条直线斜率之积为1在初中并不适合直接用,故取两邻边相等.
即根据菱形的图形性质,我们可以列出关于点坐标的3个等式,
故菱形存在性问题点坐标最多可以有3个未知量,与矩形相同.
因此就常规题型而言,菱形存在性至少有2个动点,多则有3个动点,可细分如下两大类题型:
(1)2个定点+1个半动点+1个全动点
(2)1个定点+3个半动点
解决问题的方法也可有如下两种:
思路1:先平四,再菱形
设点坐标,根据平四存在性要求列出“A+C=B+D”(AC、BD为对角线),再结合一组邻边相等,得到方程组.
思路2:先等腰,再菱形
在构成菱形的4个点中任取3个点,必构成等腰三角形,根据等腰存在性方法可先确定第3个点,再确定第4个点.
看个例子:
如图,在坐标系中,A点坐标(1,1),B点坐标为(5,4),点C在x轴上,点D在平面中,求D点坐标,使得以A、B、C、D为顶点的四边形是菱形.
思路1:先平四,再菱形
设C点坐标为(m,0),D点坐标为(p,q).
(1)当AB为对角线时,由题意得:(AB和CD互相平分及AC=BC)
,解得:
(2)当AC为对角线时,由题意得:(AC和BD互相平分及BA=BC)
,解得:或
(3)当AD为对角线时,由题意得:
,解得:或
思路2:先等腰,再菱形
先求点C,点C满足由A、B、C构成的三角形一定是等腰三角形,用等腰存在性问题的方法先确定C,再确定D点.
(1)当AB=AC时,
C点坐标为,对应D点坐标为;
C点坐标为,对应D点坐标为.
(2)当BA=BC时,
C点坐标为(8,0),对应D点坐标为(4,-3);
C点坐标为(2,0),对应D点坐标为(-2,-3).
(3)AC=BC时,
C点坐标为,D点坐标为.
以上只是两种简单的处理方法,对于一些较复杂的题目,还需具体问题具体分析,或许有更为简便的方法.
二、典例精析
如图,抛物线与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连接AC和BC.
(1)求抛物线的解析式;
(2)若点M是y轴上的动点,在坐标平面内是否存在点N,使以点A、C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
【分析】
(1)抛物线:;
(2)先考虑M点位置,即由A、C、M三点构成的三角形是等腰三角形:
①当CA=CM时,
即CM=CA=,M点坐标为、,
对应N点坐标为、.
②当AC=AM时,
即AM=AC=,M点坐标为(0,6),
对应N点坐标为(2,0).
③当MA=MC时,
勾股定理可求得M点坐标为,
对应N点坐标为.
综上,N点坐标为、、(2,0)、.
如下图依次从左到右.
三、中考真题演练
1.(2023·西藏·中考真题)在平面直角坐标系中,抛物线与x轴交于,两点,与y轴交于点C.
(1)求抛物线的解析式;
(3)如图乙,点P为抛物线对称轴上一点,是否存在P、Q两点使以点A,C,P,Q为顶点的四边形是菱形?若存在,求出P、Q两点的坐标,若不存在,请说明理由.
【分析】(1)将,代入,求出,即可得出答案;
(3)抛物线的对称轴为直线,设,,求出,,,分三种情况:以为对角线或以为对角线或以为对角线.
【详解】(1)解:(1)∵,两点在抛物线上,
∴
解得,,
∴抛物线的解析式为:;
(3)存在,理由如下:
抛物线的对称轴为:直线,
设,,
∵,
则,
,
,
∵以为顶点的四边形是菱形,
∴分三种情况:以为对角线或以为对角线或以为对角线,
当以为对角线时,则,如图1,
∴,
解得:,
∴或
∵四边形是菱形,
∴与互相垂直平分,即与的中点重合,
当时,
∴,
解得:,
∴
当时,
∴,
解得:,
∴
以为对角线时,则,如图2,
∴,
解得:,
∴,
∵四边形是菱形,
∴与互相垂直平分,即与中点重合,
∴,
解得:,
∴;
当以为对角线时,则,如图3,
∴,
解得:,
∴,
∵四边形是菱形,
∴与互相垂直平分,即与的中点重合,
∴,
解得:
∴,
综上所述,符合条件的点P、Q的坐标为: ,或,或,或或
2.(2023·辽宁锦州·中考真题)如图,抛物线交轴于点和,交轴于点,顶点为.
(1)求抛物线的表达式;
(3)在(2)的条件下,若点是对称轴上一点,点是坐标平面内一点,在对称轴右侧的抛物线上是否存在点,使以,,,为顶点的四边形是菱形,且,如果存在,请直接写出点的坐标;如果不存在,请说明理由.
【详解】(1)解:∵抛物线经过点,,
∴,解得.
∴抛物线的表达式为:.
(3)解:存在,点的坐标为或.
如下图,连接,,
∵四边形是菱形,,
∴,
∵,
∴是等边三角形.
∴,
∵,,,
∴,,点与点关于对称轴对称,
∴,,
∴是等边三角形,,
∴,
∴即,,
∴.
∴.
∴直线的表达式为:.
与抛物线表达式联立得.
∴点坐标为.
如下图,连接,,,
同理可证:是等边三角形,是等边三角形,.
∴,
∵,,
∴.
∴.
∴.
∴直线的表达式为:.
与抛物线表达式联立得.
∴点坐标为.
3.(2023·四川雅安·中考真题)在平面直角坐标系中,已知抛物线过点,对称轴是直线.
(1)求此抛物线的函数表达式及顶点M的坐标;
(3)已知点E在抛物线的对称轴上,点D的坐标为,是否存在点F,使以点A,D,E,F为顶点的四边形为菱形?若存在,请直接写出点F的坐标;若不存在,请说明理由.
【详解】(1)解:由题意可得:
,解得:,
所以抛物线的函数表达式为;
当时,,则顶点M的坐标为.
(3)解:存在点F,使以点A,D,E,F为顶点的四边形为菱形
①如图:线段作为菱形的边,
当为菱形的对角线时,作关于直线的对称线段交于E,连接,作点E关于的对称点F,即为菱形,由对称性可得F的坐标为,故存在点F,使以点A,D,E,F为顶点的四边形为菱形,此时.
当为菱形对角线时,,
设,,
则,解得:或,
∴或
②线段作为菱形的对角线时,
如图:设
∵菱形,
∴,的中点G的坐标为,点G是的中点,
∴,解得,
∴,
设,
则有:,解得:,
∴.
综上,当或或或时,以点A,D,E,F为顶点的四边形为菱形.
4.(2023·湖南·中考真题)如图,在平面直角坐标系中,抛物线经过点和点,且与直线交于两点(点在点的右侧),点为直线上的一动点,设点的横坐标为.
(1)求抛物线的解析式.
(3)抛物线与轴交于点,点为平面直角坐标系上一点,若以为顶点的四边形是菱形,请求出所有满足条件的点的坐标.
【分析】(1)待定系数法求解析式即可求解;
(3)根据题意,分别求得,①当为对角线时,,②当为边时,分,,根据勾股定理即可求解.
【详解】(1)解:∵抛物线经过点和点,
∴,
解得:,
∴抛物线解析式为:;
(3)∵抛物线与轴交于点,
∴,当时,,即,
∵,
∴,
,,
①当为对角线时,,
∴,
解得:,
∴,
∵的中点重合,
∴,
解得:,
∴,
②当为边时,
当四边形为菱形,
∴,
解得:或,
∴或,
∴或,
由的中点重合,
∴或,
解得:或,
∴或,
当时;
如图所示,即四边形是菱形,
点的坐标即为四边形为菱形时,的坐标,
∴点为或,
综上所述,点为或或或或.
【点睛】本题考查了二次函数的性质,面积问题,菱形的性质与判定,勾股定理,熟练掌握二次函数的性质,细心的计算是解题的关键.
5.(2023·四川广安·中考真题)如图,二次函数的图象交轴于点,交轴于点,点的坐标为,对称轴是直线,点是轴上一动点,轴,交直线于点,交抛物线于点.
(1)求这个二次函数的解析式.
(3)若点在轴上运动,则在轴上是否存在点,使以、为顶点的四边形是菱形?若存在,请直接写出所有满足条件的点的坐标;若不存在,请说明理由.
【分析】(1)先根据二次函数对称轴公式求出,再把代入二次函数解析式中进行求解即可;
(3)分如图3-1,图3-2,图3-3,图3-4,图3-5,图3-6所示,为对角线和边,利用菱形的性质进行列式求解即可.
【详解】(1)解:∵二次函数的对称轴为直线,
∴,
∴,
∵二次函数经过点,
∴,即,
∴,
∴二次函数解析式为;
(2)解:∵二次函数经过点,且对称轴为直线,
∴,
∴,
∵二次函数与y轴交于点C,
∴,
∴;
设直线的解析式为,
∴,
∴,
∴直线的解析式为,
设,则,,
∴;
∵,
∴
,
∵,
∴当时,最大,最大值为,
∴此时点P的坐标为;
(3)解:设,则,,
∵轴,
∴轴,即,
∴是以、为顶点的菱形的边;
如图3-1所示,当为对角线时,
∵,
∴是等腰直角三角形,
∴,
∵,
∴,
∴,
∴轴,
∴轴,即轴,
∴点C与点N关于抛物线对称轴对称,
∴点N的坐标为,
∴,
∴;
如图3-2所示,当为边时,则,
∵,,
∴,
∴,
解得或(舍去),
∴,
∴;
如图3-3所示,当为边时,则,
同理可得,
∴,
解得或(舍去),
∴,
∴;
如图3-4所示,当为边时,则,
同理可得,
解得(舍去)或(舍去);
如图3-5所示,当为对角线时,
∴,
∵,
∴,
∴,
∴轴,
∴轴,这与题意相矛盾,
∴此种情形不存在
如图3-6所示,当为对角线时,设交于S,
∵轴,
∴,
∵,
∴,这与三角形内角和为180度矛盾,
∴此种情况不存在;
综上所述,或或.
【点睛】本题主要考查了二次函数综合,一次函数与几何综合,菱形的性质,勾股定理,求二次函数解析式等等,利用分类讨论的思想求解是解题的关键.
6.(2023·重庆·中考真题)如图,在平面直角坐标系中,抛物线过点,且交x轴于点,B两点,交y轴于点C.
(1)求抛物线的表达式;
(2)点P是直线上方抛物线上的一动点,过点P作于点D,过点P作y轴的平行线交直线于点E,求周长的最大值及此时点P的坐标;
(3)在(2)中周长取得最大值的条件下,将该抛物线沿射线方向平移个单位长度,点M为平移后的抛物线的对称轴上一点.在平面内确定一点N,使得以点A,P,M,N为顶点的四边形是菱形,写出所有符合条件的点N的坐标,并写出求解点N的坐标的其中一种情况的过程.
【答案】(1)
(2)周长的最大值,此时点
(3)以点A,P,M,N为顶点的四边形是菱形时或或
【分析】(1)把、代入计算即可;
(2)延长交轴于,可得,进而得到,,求出的最大值即可;
(3)先求出平移后的解析式,再设出M,N的坐标,最后根据菱形的性质和判定计算即可.
【详解】(1)把、代入得,,
解得,
∴抛物线的表达式为;
(2)延长交轴于,
∵过点P作于点D,过点P作y轴的平行线交直线于点E,
∴,,
∴,
∴,
∴,
∴当最大时周长的最大
∵抛物线的表达式为,
∴,
∴直线解析式为,
设,则
∴,
∴当时最大,此时
∵周长为,
∴周长的最大值为,此时,
即周长的最大值,此时点;
(3)∵将该抛物线沿射线方向平移个单位长度,可以看成是向右平移2个单位长度再向下平移一个单位长度,
∴平移后的解析式为,此抛物线对称轴为直线,
∴设,
∵,
∴,,,
当为对角线时,此时以点A,P,M,N为顶点的四边形是菱形
∴与互相平分,且
∴,解得
∵中点坐标为,中点坐标为,
(1)求抛物线的解析式;
(3)若点是抛物线对称轴上一动点,点为坐标平面内一点,是否存在以为边,点为顶点的四边形是菱形,若存在,请直接写出点的坐标;若不存在,请说明理由.
【分析】(1)利用待定系数法代入求解即可;
(3)分两种情况进行分析:若为菱形的边长,利用菱形的性质求解即可.
【详解】(1)解:将点代入解析式得:
,
解得:,
∴抛物线的解析式为;
(3)存在,或或,,证明如下:
∵,
∵抛物线的解析式为,
∴对称轴为:,
设点,
若为菱形的边长,菱形,
则,即,
解得:,,
∵,
∴,
∴,;
若为菱形的边长,菱形,
则,即,
解得:,,
∵,
∴,
∴,;
综上可得:
或或,.
【点睛】题目主要考查二次函数的综合应用,包括待定系数法确定函数解析式,三角形面积问题及特殊四边形问题,全等三角形的判定和性质等,理解题意,综合运用这些知识点是解题关键.
相关试卷
这是一份专题7二次函数与菱形存在性问题(教师版)-拔尖2023中考数学压轴题突破(全国通用),共97页。
这是一份专题7二次函数与菱形存在性问题(学生版)-拔尖2023中考数学压轴题突破(全国通用),共17页。
这是一份中考数学压轴题之学霸秘笈大揭秘(全国通用)专题7二次函数与菱形存在性问题(原卷版+解析),共104页。