终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    数学:江西省八校协作2023-2024学年高一下学期5月月考试题(解析版)

    立即下载
    加入资料篮
    数学:江西省八校协作2023-2024学年高一下学期5月月考试题(解析版)第1页
    数学:江西省八校协作2023-2024学年高一下学期5月月考试题(解析版)第2页
    数学:江西省八校协作2023-2024学年高一下学期5月月考试题(解析版)第3页
    还剩8页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学:江西省八校协作2023-2024学年高一下学期5月月考试题(解析版)

    展开

    这是一份数学:江西省八校协作2023-2024学年高一下学期5月月考试题(解析版),共11页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。
    一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
    1. 下列命题为真命题的是( )
    A. 小于的角都是锐角B. 钝角一定是第二象限角
    C. 第二象限角大于第一象限角D. 若,则是第二或第三象限的角
    【答案】B
    【解析】对于A中,小于的角,例如,但不是锐角,所以A是假命题;
    对于B中,因为钝角的范围是是第二象限角,所以B是真命题;
    对于C中,例如:是第二象限角,是第一象限角,但,
    所以C是假命题;
    对于D中,当时,,但不是第二或第三象限的角,
    所以D是假命题.
    故选:B.
    2. 已知向量,且,则( )
    A. -4B. 2C. 4D. 8
    【答案】C
    【解析】,因为,所以,解得.
    故选:C.
    3. 已知,其中为虚数单位,则复数在复平面内对应的点在( )
    A. 第一象限B. 第二象限
    C. 第三象限D. 第四象限
    【答案】A
    【解析】由题意,对应点,在第一象限.
    故选:A.
    4. 已知函数的部分图象如图所示,则函数的解析式为( )
    A. B.
    C. D.
    【答案】D
    【解析】由函数的图象得,,即,则,
    ∴,
    ∵,则,则,
    得,∵,
    ∴当时,,则函数.
    故选:D.
    5. 已知为的重心,且,则的值为( )
    A. B. C. D.
    【答案】B
    【解析】为的重心,.
    故选:B.
    6. 已知函数是偶函数,要得到函数的图象,只需将函数的图象( )
    A. 向左平移个单位B. 向右平移个单位
    C. 向右平移个单位D. 向左平移个单位
    【答案】C
    【解析】因为函数是偶函数,
    所以,
    因为,所以,所以,
    要得到函数的图象,
    只需将函数的图象向右平移个单位即可.
    故选:C.
    7. 下列函数中同时具有性质:①最小正周期是,②图象关于点对称,③在上为减函数的是( )
    A B.
    C. D.
    【答案】C
    【解析】对于A项,,故A错误;
    对于B项, ,,函数在上单调递增,
    则函数在上单调递增,故B错误;
    对于C项,;当时,,
    则其图象关于点对称;
    当,,函数在区间上单调递减,
    则函数在区间单调递减,故C正确;
    对于D项,当时,,故D错误.
    故选:C.
    8. 已知向量,则下列说法错误的是( )
    A. 存在,使得B. 存在,使得
    C. 对于任意D. 对于任意
    【答案】A
    【解析】对于A,,若,则,
    因为,此时无解,故A错误;
    对于B,若,则,因为,所以,故B正确;
    对于C ,,因为,所以,
    则,所以,故C正确;
    对于D ,由,
    因为,则,所以,
    则,故D正确.
    故选:A.
    二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
    9. 在△ABC中,角A,B,C所对的边分别为a,b,c,则下列对三角形解的个数的判断正确的是( )
    A. a=7,b=14,A=30°,有两解
    B. a=30,b=25,A=150°,有一解
    C. ,,A=60°,无解
    D. a=6,b=9,A=45°,有两解
    【答案】BC
    【解析】选项A,由正弦定理,得,
    又,故,则三角形有一解,故选项A错误;
    选项B,因为,所以,则三角形有一解,
    故选项B正确;
    选项C,因为,所以,则三角形无解,
    故选项C正确;
    选项D,因为,所以,则三角形无解,故选项D错误.
    故选:BC.
    10. 如图所示,在中,点D在边BC上,且,点E在AD上,且,则( )
    A. B.
    C. D.
    【答案】ABD
    【解析】∵,点E在AD上,,
    ∴,
    ∴.
    故选:ABD.
    11. 对于函数给出下列四个命题,其中正确命题的序号是( )
    A. 该函数是以为最小正周期的周期函数
    B. 当且仅当时,该函数取得最小值
    C. 该函数的图象关于直线对称
    D. 当且仅当时,
    【答案】CD
    【解析】函数,
    可得,当,时,,
    当,时,,
    则的最小正周期为,故A错误;
    画出在一个周期内的图象,
    当或,时,取得最小值,故B错误;
    由图可知的图象关于直线对称,故C正确;
    当且仅当时,,
    的最大值为,可得,故D正确.
    故选:CD.
    三、填空题:本题共3小题,每小题5分,共15分.
    12. 已知向量,则________.
    【答案】
    【解析】.
    故答案为:.
    13. 已知,则___________.
    【答案】
    【解析】因为,所以.
    故答案为:.
    14. 在中,角A,B,C的对边分别为a,b,c,,,,则____________;的面积为____________.
    【答案】
    【解析】由题意知,
    即,
    由正弦定理得,
    由余弦定理得,
    又,
    ,则有,解得,
    故的面积.
    故答案为: .
    四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.
    15. 已知的内角所对的边分别为,且,解三角形.
    解:,,由正弦定理得:
    ,∴.
    16. 已知向量,.
    (1)求;
    (2)设,的夹角为,求的值;
    (3)若向量与互相平行,求k的值.
    解:(1)因为,,所以,
    所以.
    (2)由已知可得,,,

    (3),,
    由题意可得,,整理可得,解得.
    17. 已知函数.
    (1)求的值;
    (2)已知,求的值.
    解:(1),
    ∴.
    (2)由,得,
    .
    18. 已知向量,,其中,函数,若函数图象的两个相邻对称中心的距离为.
    (1)求函数的单调递增区间;
    (2)将函数的图象先向左平移个单位长度,然后纵坐标不变,横坐标伸长为原来的2倍,得到函数的图象,当时,求函数的值域.
    解:(1)由题意可得,,

    由题意知,,得,则,
    由,解得,
    ∴的单调递增区间为.
    (2)将的图象向左平移个单位长度,得到的图象,
    纵坐标不变,横坐标伸长为原来的倍,得到的图象,
    ∵,∴,故函数的值域为.
    19. 在中,角A,B,C所对的边分别为a,b,c,已知向量,,且.
    (1)求角A的大小;
    (2)若,求周长的取值范围.
    解:(1)∵,∴,
    由正弦定理,得,
    又,∴,
    由于,∴.
    (2)∵,,
    由正弦定理,得,,

    ∵,∴,则,
    ∴,
    ∴,则,
    故周长的取值范围为.

    相关试卷

    2024江西省八校协作高一下学期5月月考数学试题:

    这是一份2024江西省八校协作高一下学期5月月考数学试题,共9页。试卷主要包含了本试卷分选择题和非选择题两部分,答题前,考生务必用直径0,本卷命题范围,已知为的重心,且,则的值为,下列函数中同时具有性质,已知向量,则下列说法错误的是等内容,欢迎下载使用。

    江西省八校协作2023-2024学年高一下学期5月月考数学试题(Word版附答案):

    这是一份江西省八校协作2023-2024学年高一下学期5月月考数学试题(Word版附答案),共9页。试卷主要包含了本试卷分选择题和非选择题两部分,答题前,考生务必用直径0,本卷命题范围,已知为的重心,且,则的值为,下列函数中同时具有性质,已知向量,则下列说法错误的是等内容,欢迎下载使用。

    江西省南昌市等5地2023-2024学年高一数学上学期10月月考试题(Word版附解析):

    这是一份江西省南昌市等5地2023-2024学年高一数学上学期10月月考试题(Word版附解析),共18页。试卷主要包含了本试卷主要考试内容等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map