微专题13 导数解答题之双变量问题 -2024年新高考数学二轮复习微专题提分突破140分(原卷版)
展开1、破解双参数不等式的方法:
一是转化,即由已知条件入手,寻找双参数满足的关系式,并把含双参数的不等式转化为含单参数的不等式;
二是巧构函数,再借用导数,判断函数的单调性,从而求其最值;
三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果;
四是主元法.
【典型例题】
例1.(2024·浙江温州·二模)如图,对于曲线,存在圆满足如下条件:
①圆与曲线有公共点,且圆心在曲线凹的一侧;
②圆与曲线在点处有相同的切线;
③曲线的导函数在点处的导数(即曲线的二阶导数)等于圆在点处的二阶导数(已知圆在点处的二阶导数等于);
则称圆为曲线在点处的曲率圆,其半径称为曲率半径.
(1)求抛物线在原点的曲率圆的方程;
(2)求曲线的曲率半径的最小值;
(3)若曲线在和处有相同的曲率半径,求证:.
例2.(2024·四川南充·二模)已知函数有三个极值点.
(1)求实数的取值范围;
(2)若,求实数的取值范围.
例3.(2024·四川·一模)已知函数.
(1)若,求的最小值;
(2)若有2个零点,证明:.
例4.(2024·全国·模拟预测)已知函数有3个极值点,其中是自然对数的底数.
(1)求实数的取值范围;
(2)求证:.
例5.(2024·高三·湖南长沙·阶段练习)已知函数.
(1)若是函数的一个极值点,求实数的值;
(2)若函数有两个极值点,其中,
①求实数的取值范围;
②若不等式恒成立,求实数的取值范围.
例6.(2024·高三·甘肃·开学考试)已知函数.
(1)若在上单调递增,求的取值范围;
(2)若有2个极值点,求证:.
例7.(2024·高三·湖南·开学考试)已知函数.
(1)讨论的单调性;
(2)若方程有两个不相等的根,且的导函数为,证明:.
例8.(2024·高三·河南周口·期末)已知函数.
(1)若在上单调递减,求的取值范围;
(2)若,求证:;
(3)在(2)的条件下,若方程两个不同的实数根分别为,,求证:.
例9.(2024·全国·模拟预测)设函数.
(1)若,求函数的最值;
(2)若函数有两个不同的极值点,记作,且,求证:.
【过关测试】
1.(2024·高三·天津宁河·期末)已知函数,.
(1)当时,求曲线在处的切线方程;
(2)求的单调区间;
(3)设是函数的两个极值点,证明:.
2.(2024·高三·全国·专题练习)已知函数,其中.
(1)当时,求的极值;
(2)当,时,证明:.
3.(2024·广东湛江·一模)已知函数.
(1)讨论的单调性;
(2)若方程有两个根,,求实数a的取值范围,并证明:.
4.(2024·广东·模拟预测)已知.
(1)讨论的单调性;
(2)若存在两个零点,证明:存在三个零点,且
(3)在(2)的条件下,证明:.
5.(2024·天津和平·一模)已知函数,(为自然对数的底数).
(1)求函数的单调区间:
(2)设在处的切线方程为,求证:当时,;
(3)若,存在,使得,且,求证:当时,.
6.(2024·天津·一模)设函数.
(1)求曲线在点处的切线方程;
(2)设函数
(i)当时,取得极值,求的单调区间;
(ii)若存在两个极值点,证明:.
7.(2024·青海·一模)已知函数.
(1)若,求的取值范围;
(2)若有两个零点,,证明:.
8.(2024·全国·一模)已知
(1)若,求实数的取值范围;
(2)设是的两个零点(),求证:①;②.
9.(2024·吉林延边·一模)已知有两个极值点.
(1)求实数a的取值范围;
(2)证明:.
10.(2024·辽宁大连·一模)已知函数的定义域为区间值域为区间,若则称是的缩域函数.
(1)若是区间的缩域函数,求a的取值范围;
(2)设为正数,且若是区间的缩域函数,证明:
(i)当时,在单调递减;
(ii)
11.(2024·高三·江西·开学考试)已知函数,且的极值点为.
(1)求;
(2)证明:;
(3)若函数有两个不同的零点,证明:.
12.(2024·高三·河北·开学考试)已知函数
(1)若、在处切线的斜率相等,求的值;
(2)若方有两个实数根,试证明:;
(3)若方程有两个实数根,试证明:.
13.(2024·四川凉山·二模)已知函数.
(1)若函数在R上是增函数,求a的取值范围;
(2)设,若,证明:.
14.(2024·高三·江苏·专题练习)已知函数,.
(1)求的单调区间;
(2)设是函数的两个极值点,证明:.
15.(2024·江西上饶·一模)已知函数,若为实数,且方程有两个不同的实数根.
(1)求的取值范围:
(2)①证明:对任意的都有;
②求证:.
16.(2024·高三·新疆伊犁·阶段练习)已知,函数.
(1)当时,求的单调区间;
(2)当时,设的导函数为,若恒成立,求证:存在,使得;
(3)设,若存在,使得,证明:.
17.(2024·高三·广东·阶段练习)设函数,其中a为实数.
(1)当时,求的单调区间;
(2)当在定义域内有两个不同的极值点时,证明:.
18.(2024·高三·山东菏泽·阶段练习)已知函数,,为常数.
(1)求的单调性;
(2)令,若且.证明:.
19.(2024·河北邯郸·三模)已知函数,.
(1)求曲线在点处的切线方程.
(2)已知关于的方程恰有4个不同的实数根,其中,.
(i)求的取值范围;
(ii)求证:.
20.(2024·黑龙江齐齐哈尔·一模)已知函数.
(1)设函数,讨论的单调性;
(2)设分别为的极大值点和极小值点,证明:.
21.(2024·广西南宁·一模)已知函数.
(1)若直线与函数和均相切,试讨论直线的条数;
(2)设,求证:.
微专题19 圆锥曲线经典难题之一类定点、定值问题的通性通法研究 -2024年新高考数学二轮复习微专题提分突破140分(原卷版): 这是一份微专题19 圆锥曲线经典难题之一类定点、定值问题的通性通法研究 -2024年新高考数学二轮复习微专题提分突破140分(原卷版),共11页。
微专题22 计数原理与概率统计压轴小题 -2024年新高考数学二轮复习微专题提分突破140分(原卷版): 这是一份微专题22 计数原理与概率统计压轴小题 -2024年新高考数学二轮复习微专题提分突破140分(原卷版),共7页。
微专题23 痛点问题之概率统计经典解答题 -2024年新高考数学二轮复习微专题提分突破140分(原卷版): 这是一份微专题23 痛点问题之概率统计经典解答题 -2024年新高考数学二轮复习微专题提分突破140分(原卷版),共12页。