终身会员
搜索
    上传资料 赚现金
    押新高考第14题 立体几何综合(原卷版)-备战2024年高考数学临考题号押题(新高考通用)
    立即下载
    加入资料篮
    押新高考第14题 立体几何综合(原卷版)-备战2024年高考数学临考题号押题(新高考通用)01
    押新高考第14题 立体几何综合(原卷版)-备战2024年高考数学临考题号押题(新高考通用)02
    押新高考第14题 立体几何综合(原卷版)-备战2024年高考数学临考题号押题(新高考通用)03
    还剩6页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    押新高考第14题 立体几何综合(原卷版)-备战2024年高考数学临考题号押题(新高考通用)

    展开
    这是一份押新高考第14题 立体几何综合(原卷版)-备战2024年高考数学临考题号押题(新高考通用),共9页。试卷主要包含了空间的线线平行或垂直,异面直线所成角,直线与平面所成角,.等内容,欢迎下载使用。


    1.(2023·新高考Ⅰ卷高考真题第12题)下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有( )
    A.直径为的球体
    B.所有棱长均为的四面体
    C.底面直径为,高为的圆柱体
    D.底面直径为,高为的圆柱体
    2.(2023·新高考Ⅰ卷高考真题第8题)已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是( )
    A.B.C.D.
    3.(2022·新高考Ⅱ卷高考真题第11题)如图,四边形为正方形,平面,,记三棱锥,,的体积分别为,则( )
    A.B.
    C.D.
    4.(2021·新高考Ⅰ卷高考真题第12题)在正三棱柱中,,点满足,其中,,则( )
    A.当时,的周长为定值
    B.当时,三棱锥的体积为定值
    C.当时,有且仅有一个点,使得
    D.当时,有且仅有一个点,使得平面
    立体几何基础公式
    所有椎体体积公式:,所有柱体体积公式:,球体体积公式:
    球体表面积公式:,圆柱:
    圆锥:
    长方体(正方体、正四棱柱)的体对角线的公式
    已知长宽高求体对角线:
    已知共点三面对角线求体对角线:
    棱长为的正四面体的内切球的半径为,外接球的半径为.
    欧拉定理(欧拉公式)
    (简单多面体的顶点数V、棱数E和面数F).
    (1)=各面多边形边数和的一半.特别地,若每个面的边数为的多边形,则面数F与棱数E的关系:;
    (2)若每个顶点引出的棱数为,则顶点数V与棱数E的关系:.
    5.空间的线线平行或垂直
    设,,则

    .
    夹角公式
    设,b=,则
    .
    6.异面直线所成角
    =
    (其中()为异面直线所成角,分别表示异面直线的方向向量)
    7.直线与平面所成角,(为平面的法向量).
    8. .二面角的平面角
    (,为平面,的法向量).
    异面直线间的距离
    (是两异面直线,其公垂向量为,分别是上任一点,为间的距离).
    点到平面的距离
    (为平面的法向量,是经过面的一条斜线,).
    1.(2024·全国·模拟预测)已知三棱柱中,是边长为2的等边三角形,四边形为菱形,,平面平面,为的中点,为的中点,则三棱锥的外接球的表面积为 .
    2.(2024·全国·模拟预测)如图,在直三棱柱中,,分别为线段,的中点,,,平面平面,则四面体ABMN的外接球的表面积为 .

    3.(2024·全国·模拟预测)某礼品生产厂准备给如图所示的八面体形玻璃制品设计一个球形包装盒.已知该八面体可以看成由一个棱长为的大正四面体截去四个全等的棱长均为的小正四面体得到的,且小正四面体的其中一个顶点为大正四面体的顶点,则该球形包装盒的半径的最小值为 .(不考虑包装盒的质量、厚度等)
    4.(2024·全国·模拟预测)如图,在长方体中,,,M,N分别为BC,的中点,点P在矩形内运动(包括边界),若平面AMN,则取最小值时,三棱锥的体积为 .
    5.(2024·全国·模拟预测)如图,该“四角反棱柱”是由两个相互平行且全等的正方形经过旋转、连接而成,其侧面均为等边三角形,则该“四角反棱柱”外接球的表面积与侧面面积的比为 .
    6.(2024·全国·模拟预测)已知圆锥的母线,侧面积为,则圆锥的内切球半径为 ;若正四面体能在圆锥内任意转动,则正四面体的最大棱长为 .
    7.(2024·云南昆明·一模)已知球的表面积为,正四棱锥的所有顶点都在球的球面上,则该正四棱锥体积的最大值为 .
    8.(2024·全国·模拟预测)在三棱锥中,两两互相垂直,,当三棱锥的体积取得最大值时,该三棱锥的内切球半径为 .
    9.(2024·湖南长沙·一模)已知正四棱锥的顶点均在球的表面上.若正四棱锥的体积为1,则球体积的最小值为 .
    10.(2024·全国·一模)在四面体中,,,,,则四面体体积的最大值为 .
    11.(2024·湖南长沙·一模)如图是一个球形围墙灯,该灯的底座可以近似看作正四棱台.球形灯与底座刚好相切,切点为正四棱台上底面中心,且球形灯内切于底座四棱台的外接球.若正四棱台的上底面边长为4,下底面边长为2,侧棱长为,则球形灯半径与正四棱台外接球半径的比值为 .
    12.(2024·山东日照·一模)已知正四棱锥的所有棱长都为2;点E在侧棱SC上,过点E且垂直于SC的平面截该棱锥,得到截面多边形H,则H的边数至多为 ,H的面积的最大值为 .
    13.(2024·山东菏泽·一模)如图,在正四棱台中,,,该棱台体积,则该棱台外接球的表面积为 .

    14.(2024·广东汕头·一模)如图,在正方体中,是棱的中点,记平面与平面的交线为,平面与平面的交线为,若直线分别与所成的角为,则 , .
    15.(2024·辽宁辽阳·一模)如图,在矩形中,分别在线段上,,将沿折起,使到达的位置,且平面平面,若直线与平面所成角的正切值为,则四面体的外接球的半径为 .
    16.(2024·山东聊城·一模)已知正四面体的棱长为2,动点满足,且,则点的轨迹长为 .
    17.(2024·黑龙江·二模)已知三棱锥的四个面是全等的等腰三角形,且,,则三棱锥的外接球半径为 ;点为三棱锥的外接球球面上一动点,时,动点的轨迹长度为 .
    18.(2024·广东韶关·二模)在三棱锥中,侧面所在平面与平面的夹角均为,若,且是直角三角形,则三棱锥的体积为 .
    19.(2024·全国·模拟预测)正四棱台,其上、下底面的面积分别为,,该正四棱台的外接球表面积为,则该正四棱台的侧面积为 .
    20.(2024·全国·模拟预测)已知球的表面积为,直四棱柱的顶点均在球的表面上,则直四棱柱的体积的最大值为 .
    21.(2024·山东青岛·一模)已知球O的表面积为,正四面体ABCD的顶点B,C,D均在球O的表面上,球心O为的外心,棱AB与球面交于点P.若平面,平面,平面,平面,且与之间的距离为同一定值,棱AC,AD分别与交于点Q,R,则的周长为 .
    22.(2024·辽宁·模拟预测)某零食生产厂家准备用长为,宽为4cm的长方形纸板剪去阴影部分(如图,阴影部分是全等四边形),再将剩余部分折成一个底面为长方形的四棱锥形状的包装盒,则该包装盒容积的最大值为 .

    23.(2024·山东烟台·一模)在三棱锥中,,且分别是的中点,,则三棱锥外接球的表面积为 ,该三棱锥外接球与内切球的半径之比为 .
    24.(2024·全国·模拟预测)已知空间四面体满足,则该四面体外接球体积的最小值为 .
    25.(2024·全国·模拟预测)已知球的表面积为,直四棱柱的顶点均在球的球面上,则该直四棱柱的体积的最大值为 .
    26.(2024·全国·模拟预测)如图,已知四棱锥的底面为矩形,平面为的中点,点分别在线段上运动,当最小时,三棱锥的体积为 .

    27.(2024·江苏宿迁·一模)在一个轴截面为正三角形的圆锥内放入一个与侧面及底面都相切的实心球后,再在该圆锥内的空隙处放入个小球,这些小球与实心球、圆锥的侧面以及底面都相切,则的最大值为 (取)

    28.(2024·江苏南通·二模)若正四棱锥的棱长均为2,则以所有棱的中点为顶点的十面体的体积为 ,该十面体的外接球的表面积为 .
    29.(2024·河北沧州·一模)如图,已知点是圆台的上底面圆上的动点,在下底面圆上,,则直线与平面所成角的余弦值的最小值为 .
    30.(2024·河北·模拟预测)已知四面体中,,过点的其外接球直径与、夹角正弦值分别为、,则与夹角正弦值为 .
    考点
    4年考题
    考情分析
    立体几何
    综合
    2023年新高考Ⅰ卷第12题2022年新高考Ⅰ卷第8题
    2022年新高考Ⅱ卷第11题
    2021年新高考Ⅰ卷第12题
    立体几何会以单选题、多选题、填空题、解答题4类题型进行考查,也常在压轴题位置进行考查,难度较难,纵观近几年的新高考试题,压轴题分别考查以正方体为出题背景的相关几何体的体积计算、正四棱锥的外接球及体积范围、锥体体积的相关计算、空间向量的计算等综合问题,本内容是新高考冲刺复习的重点复习内容。可以预测2024年新高考命题方向将继续以立体几何压轴内容等综合问题展开命题.
    相关试卷

    押新高考第1题 复数(原卷版)-备战2024年高考数学临考题号押题(新高考通用): 这是一份押新高考第1题 复数(原卷版)-备战2024年高考数学临考题号押题(新高考通用),共4页。

    押新高考第16题 立体几何综合(解答题)-2024年高考数学临考题号押题(新高考通用): 这是一份押新高考第16题 立体几何综合(解答题)-2024年高考数学临考题号押题(新高考通用),文件包含押新高考第16题立体几何综合解答题原卷版docx、押新高考第16题立体几何综合解答题解析版docx等2份试卷配套教学资源,其中试卷共86页, 欢迎下载使用。

    押新高考第15题A 数列综合(解答题)-2024年高考数学临考题号押题(新高考通用): 这是一份押新高考第15题A 数列综合(解答题)-2024年高考数学临考题号押题(新高考通用),文件包含押新高考第15题A数列综合解答题原卷版docx、押新高考第15题A数列综合解答题解析版docx等2份试卷配套教学资源,其中试卷共48页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map