还剩3页未读,
继续阅读
北师大版八年级下册数学教案
展开这是一份北师大版八年级下册数学教案,共6页。教案主要包含了教学目标等内容,欢迎下载使用。
北师大版八年级下册数学教案1一、教学目标:1、理解极差的定义,知道极差是用来反映数据波动范围的一个量2、会求一组数据的极差二、重点、难点和难点的突破方法1、重点:会求一组数据的极差2、难点:本节课内容较容易接受,不存在难点。三、例习题的意图分析教材P151引例的意图(1)、主要目的是用来引入极差概念的(2)、可以说明极差在统计学家族的角色——反映数据波动范围的量(3)、交待了求一组数据极差的方法。四、课堂引入:引入问题可以仍然采用教材上的“乌鲁木齐和广州的气温情”为了更加形象直观一些的反映极差的意义,可以画出温度折线图,这样极差之所以用来反映数据波动范围就不言而喻了。五、例习题分析本节课在教材中没有相应的例题,教材P152习题分析问题1 可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大。问题2 涉及前一个学期统计知识首先应回忆复习已学知识。问题3答案并不,合理即可。六、随堂练习:1、一组数据:473、865、368、774、539、474的极差是 ,一组数据1736、1350、-2114、-1736的极差是 .2、一组数据3、-1、0、2、X的极差是5,且X为自然数,则X= .3、下列几个常见统计量中能够反映一组数据波动范围的是( )A.平均数 B.中位数 C.众数 D.极差4、一组数据X 、X …X 的极差是8,则另一组数据2X +1、2X +1…,2X +1的极差是( )A. 8 B.16 C.9 D.17答案:1. 497、3850 2. 4 3. D 4.B七、课后练习:1、已知样本9.9、10.3、10.3、9.9、10.1,则样本极差是( )A. 0.4 B.16 C.0.2 D.无法确定在一次数学考试中,第一小组14名学生的成绩与全组平均分的差是2、3、-5、10、12、8、2、-1、4、-10、-2、5、5、-5,那么这个小组的平均成绩是( )A. 87 B. 83 C. 85 D无法确定3、已知一组数据2.1、1.9、1.8、X、2.2的平均数为2,则极差是 。4、若10个数的平均数是3,极差是4,则将这10个数都扩大10倍,则这组数据的平均数是 ,极差是 。5、某活动小组为使全小组成员的成绩都要达到优秀,打算实施“以优帮困”计划,为此统计了上次测试各成员的成绩(单位:分)90、95、87、92、63、54、82、76、55、100、45、80计算这组数据的极差,这个极差说明什么问题?将数据适当分组,做出频率分布表和频数分布直方图。答案:1.A ; 2.D ; 3. 0.4 ; 4.30、40. 5(1)极差55分,从极差可以看出这个小组成员成绩优劣差距较大。(2)略北师大版八年级下册数学教案2学习目标:(1)了解运用公式法分解因式的意义;(2)会用完全平方公式进行因式分解;(3)清楚优先提取公因式,然后考虑用公式中考考点:正向、逆向运用公式,特别是配方法是必考点。预习作业:1. 完全平方公式字母表示: .2、形如或的式子称为3. 结构特征:项数、次数、系数、符号填空:(1)(a+b)(a-b) = ;(2)(a+b)2= ;(3)(a–b)2= ;根据上面式子填空:(1)a2–b2= ;(2)a2–2ab+b2= ;(3)a2+2ab+b2= ;结 论:形如a2+2ab+b2 与a2–2ab+b2的式子称为完全平方式.a2–2ab+b2=(a–b)2 a2+2ab+b2=(a+b)2完全平方公式特点:首平方,尾平方,积的2倍在中央,符号看前方。例1: 把下列各式因式分解:(1)x2–4x+4 (2)9a2+6ab+b2(3)m2– (4)例2、将下列各式因式分解:(1)3ax2+6axy+3ay2 (2)–x2–4y2+4xy注:优先提取公因式,然后考虑用公式例3: 分解因式(1) (2)(3) (4)点拨:把 分解因式时:1、如果常数项q是正数,那么把它分解成两个同号因数,它们的符号与一次项系数P的符号相同2、如果常数项q是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数P的符号相同3、对于分解的两个因数,还要看它们的和是不是等于一次项的系数P变式练习:(1) (2)(3)借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,叫做十字相乘法口诀:首尾拆,交叉乘,凑中间。拓展训练:若把代数式化为的形式,其中m,k为常数,求m+k的值已知,求x,y的值当x为何值时,多项式取得最小值,其最小值为多少?回顾与思考学习目标:(1)提高因式分解的基本运算技能(2)能熟练进行因式分解方法的综合运用.学习准备:1、把一个多项式化成 的形式,叫做把这个多项式分解因式。要弄清楚分解因式的概念,应把握如下特点:(1)结果一定是 的形式;(2)每个因式都是 ;(3)各因式一定要分解到 为止。2、分解因式与 是互逆关系。3、分解因式常用的方法有:(1)提公因式法:(2)应用公式法:①平方差公式: ②完全平方公式:(3)分组分解法:am+an+bm+bn=(4)十字相乘法:=4、分解因式步骤:(1)首先考虑提取 ,然后再考虑套公式;(2)对于二次三项式联想到平方差公式因式分解;(3)对于二次三项式联想到完全平方公式,若不行再考虑十字相乘法分解因式;(4)超过三项的多项式考虑分组分解;(5)分解完毕不要大意,检查是否分解彻底。辨析题:1、下列哪些式子的变形是因式分解?(1)x2–4y2=(x+2y)(x–2y)(3)4m2–6mn+9n2 =2m(2m–3n)+9n2(4)m2+6mn+9n2=(m+3n)22、把下列各式分解因式:(1)7x2–63 (2)(x+y)2–14(x+y)+49(3) (4)(a2+4)2–16a2(5) (6)(7) (8)想一想计算:1、32004–32003 2、(–2)101+(–2)1003、已知 ,求的值.例1: 把下列各式因式分解(分组后能提公因式)(1)a2-ab+ac-bc (2)2ax-10ay+5by-bx(3) 3ax +4by+4ay+3bx (4) m2+5n-mn-5m点拨:1、用分组分解法时,一定要想想分组后能否继续进行,完成因式分解,由此合理选择分组的方法2、运算律(如加法交换律、分配律)在因式分解中起着重要的作用北师大版八年级下册数学教案3不等关系一、教学目标1、知识与技能目标①理解不等式的意义.②能根据条件列出不等式.2、过程与方法目标通过认识实际问题中的不等式关系,训练学生的分析判断能力和逻辑推理能力。3、情感与态度目标通过用不等式解决实际问题,使学生认识数学与人类生活的密切联系以及对人类历史发展的作用,并激发学生学习数学的信心和兴趣。二、教学重点通过探寻实际问题中的不等式关系,认识不等式。三、教学难点通过认识实际问题中的不等式关系,训练学生的分析判断能力和逻辑推理能力。四、教学过程第一环节:创设问题情景,引入新课活动内容:寻找相等的量和不等的量师:我们学过等式,知道利用等式可以解决许多问题,同时,我们也知道现实生活中还存在许多不等关系,利用不等关系同样可以解决实际问题,本章我们就来了解不等式有关的内容。师:既然不等式关系在实际生活中并不少见,大家肯定能举出不少例子。生:师:还有其他例子吗?(同学们各抒己见)师:我这里也有一些例子。拿出给同学们参考一下。北师大版八年级下册数学教案4中位数和众数一、教学目标1、认识中位数和众数,并会求出一组数据中的众数和中位数。2、理解中位数和众数的意义和作用。它们也是数据代表,可以反映一定的数据信息,帮助人们在实际问题中分析并做出决策。3、会利用中位数、众数分析数据信息做出决策。二、重点、难点和难点的突破方法:1、重点:认识中位数、众数这两种数据代表2、难点:利用中位数、众数分析数据信息做出决策。3、难点的突破方法:首先应交待清楚中位数和众数意义和作用:中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能出现在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势。众数是当一组数据中某一重复出现次数较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少不受极端值的影响。教学过程中注重双基,一定要使学生能够很好的掌握中位数和众数的求法,求中位数的步骤:⑴将数据由小到大(或由大到小)排列,⑵数清数据个数是奇数还是偶数,如果数据个数为奇数则取中间的数,如果数据个数为偶数,则取中间位置两数的平均值作为中位数。求众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据。在利用中位数、众数分析实际问题时,应根据具体情况,课堂上教师应多举实例,使同学在分析不同实例中有所体会。三、例习题的意图分析1、教材P143的例4的意图(1)、这个问题的研究对象是一个样本,主要是反映了统计学中常用到一种解决问题的方法:对于数据较多的研究对象,我们可以考察总体中的一个样本,然后由样本的研究结论去估计总体的情况。(2)、这个例题另一个意图是交待了当数据个数为偶数时,中位数的求法和解题步骤。(因为在前面有介绍中位数求法,这里不再重述)(3)、问题2显然反映学习中位数的意义:它可以估计一个数据占总体的相对位置,说明中位数是统计学中的一个重要的数据代表。(4)、这个例题再一次体现了统计学知识与实际生活是紧密联系的,所以应鼓励学生学好这部分知识。2、教材P145例5的意图(1)、通过例5应使学生明白通常对待销售问题我们要研究的是众数,它代表该型号的产品销售,以便给商家合理的建议。(2)、例5也交待了众数的求法和解题步骤(由于求法在前面已介绍,这里不再重述)(3)、例5也反映了众数是数据代表的一种。四、课堂引入严格的讲教材本节课没有引入的问题,而是在复习和延伸中位数的定义过程中拉开序幕的,本人很同意这种处理方式,教师可以一句话引入新课:前面已经和同学们研究过了平均数的这个数据代表。它在分析数据过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据过程中又起到怎样的作用。五、例习题的分析教材P144例4,从所给的数据可以看到并没有按照从小到大(或从大到小)的顺序排列。因此,首先应将数据重新排列,通过观察会发现共有12个数据,偶数个可以取中间的两个数据146、148,求其平均值,便可得这组数据的中位数。教材P145例5,由表中第二行可以查到23.5号鞋的频数,因此这组数据的众数可以得到,所提的建议应围绕利于商家获得较大利润提出。六、随堂练习1某公司销售部有营销人员15人,销售部为了制定某种商品的销售金额,统计了这15个人的销售量如下(单位:件)1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150求这15个销售员该月销量的中位数和众数。假设销售部负责人把每位营销员的月销售定额定为320件,你认为合理吗?如果不合理,请你制定一个合理的销售定额并说明理由。2、某商店3、4月份出售某一品牌各种规格的空调,销售台数如表所示:1匹 1.2匹 1.5匹 2匹3月 12台 20台 8台 4台4月 16台 30台 14台 8台根据表格回答问题:商店出售的各种规格空调中,众数是多少?假如你是经理,现要进货,6月份在有限的资金下进货单位将如何决定?答案:1. (1)210件、210件 (2)不合理。因为15人中有13人的销售额达不到320件(320虽是原始数据的平均数,却不能反映营销人员的一般水平),销售额定为210件合适,因为它既是中位数又是众数,是大部分人能达到的额定。2. (1)1.2匹 (2)通过观察可知1.2匹的销售,所以要多进1.2匹,由于资金有限就要少进2匹空调。七、课后练习1. 数据8、9、9、8、10、8、99、8、10、7、9、9、8的中位数是 ,众数是2. 一组数据23、27、20、18、X、12,它的中位数是21,则X的值是 .3. 数据92、96、98、100、X的众数是96,则其中位数和平均数分别是( )A.97、96 B.96、96.4 C.96、97 D.98、974. 如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是( )A.24、25 B.23、24 C.25、25 D.23、255. 随机抽取我市一年(按365天计)中的30天平均气温状况如下表:温度(℃) -8 -1 7 15 21 24 30天数 3 5 5 7 6 2 2请你根据上述数据回答问题:(1).该组数据的中位数是什么?(2).若当气温在18℃~25℃为市民“满意温度”,则我市一年中达到市民“满意温度”的大约有多少天?答案:1. 9;2. 22; 3.B;4.C; 5.(1)15. (2)约97天上一篇:初二数学鼎尖教案设计模板
相关教案
最新北师大版八年级下册数学教案:
这是一份最新北师大版八年级下册数学教案,共3页。教案主要包含了教学目标,重点,课堂引入,例题讲解等内容,欢迎下载使用。
新人教版八年级下册数学教案(147页):
这是一份新人教版八年级下册数学教案(147页),共151页。
最新人教版初中八年级下册数学教案:
这是一份最新人教版初中八年级下册数学教案,共42页。