人教A版高中数学必修第二册第10章10-1-2事件的关系和运算学案
展开
这是一份人教A版高中数学必修第二册第10章10-1-2事件的关系和运算学案,共13页。
10.1.2 事件的关系和运算在掷骰子试验中,定义如下事件:Ci={出现i点},Di={出现的点数不大于2i-1}.在上述事件中,(1)事件C1与事件C2间有什么关系?(2)事件D2与事件C2间有什么关系? 知识点1 事件的关系知识点2 事件的运算1.思考辨析(正确的打“√”,错误的打“×”)(1)若两个事件是互斥事件,则这两个事件也是对立事件. ( )(2)若两个事件是对立事件,则这两个事件也是互斥事件. ( )(3)若事件A与B是互斥事件,则在一次试验中事件A和B至少有一个发生. ( )(4)抛掷一枚骰子一次,记事件A={出现点数大于4},事件B={出现的点数为5},则事件B发生时,事件A一定发生. ( )[答案] (1)× (2)√ (3)× (4)√2.从装有2个红球和2个白球的口袋内任取2个球观察颜色.设事件A为“所取两个球至少有一个白球”,事件B为“所取两个球恰有一个红球”,则A∪B表示的事件为________; A∩B表示的事件为________.[答案] 所取两个球至少有一个白球 所取两个球恰有一个红球 类型1 事件关系的判断【例1】 从40张扑克牌(红桃、黑桃、方块、梅花,点数从1~10各10张)中,任取1张.判断下列给出的每对事件是否为互斥事件,是否为对立事件,并说明理由.(1)“抽出红桃”与“抽出黑桃”;(2)“抽出红色牌”与“抽出黑色牌”;(3)“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”.[解] (1)是互斥事件,不是对立事件.理由:从40张扑克牌中任意抽取1张,“抽出红桃”和“抽出黑桃”是不可能同时发生的,所以是互斥事件.同时,不能保证其中必有一个发生,这是由于还可能抽出“方块”或者“梅花”,因此,二者不是对立事件.(2)既是互斥事件,又是对立事件.理由:从40张扑克牌中任意抽取1张,“抽出红色牌”与“抽出黑色牌”两个事件不可能同时发生,且其中必有一个发生,所以它们既是互斥事件,又是对立事件.(3)不是互斥事件,当然不是对立事件.理由:从40张扑克牌中任意抽取1张,“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”这两个事件可能同时发生,如抽得的牌点数为10,因此,二者不是互斥事件,当然也不是对立事件. 判断互斥事件、对立事件的两种方法[跟进训练]1.(1)同时掷两枚硬币,向上面都是正面为事件A,向上面至少有一枚是正面为事件B,则有( )A.A⊆B B.A⊇B C.A=B D.A与B互斥(2)从装有3个红球和2个白球的口袋中随机取出3个球,则事件“取出1个红球和2个白球”的对立事件是( )A.取出2个红球和1个白球B.取出的3个球全是红球C.取出的3个球中既有红球也有白球D.取出的3个球中不止一个红球(1)A (2)D [(1)由事件的包含关系知A⊆B.(2)从装有3个红球和2个白球的口袋中随机取出3个球,则事件“取出1个红球和2个白球”的对立事件是取出的3个球中至少有两个红球.故选D.] 类型2 事件的运算【例2】 掷一枚骰子,下列事件:A=“出现奇数点”,B=“出现偶数点”,C=“点数小于3”,D=“点数大于2”,E=“点数是3的倍数”.求:(1)A∩B,BC;(2)A∪B,B+C;(3)记H为事件H的对立事件,求D,AC,B∪C,D+E .[解] (1)A∩B=∅,BC={2}.(2)A∪B={1,2,3,4,5,6},B+C={1,2,4,6}.(3)D={1,2};AC=BC={2};B∪C=A∪C={1,2,3,5};D+E={1,2,4,5}. 事件间的运算方法(1)利用事件间运算的定义.列出同一条件下的试验所有可能出现的结果,分析并利用这些结果进行事件间的运算.(2)利用Venn图.借助集合间运算的思想,分析同一条件下的试验所有可能出现的结果,把这些结果在图中列出,进行运算.[跟进训练]2.从某大学数学系图书室中任选一本书.设A={数学书};B={中文版的书};C={2022年后出版的书}.问:(1)A∩B∩C表示什么事件?(2)在什么条件下有A∩B∩C=A?(3)如果A=B,那么是否意味着图书室中的所有的数学书都不是中文版的?[解] (1)A∩B∩C={2022年或2022年前出版的中文版的数学书}.(2)在“图书室中所有数学书都是2022年后出版的且为中文版”的条件下才有A∩B∩C=A.(3)是.A=B意味着图书室中的非数学书都是中文版的,而且所有的中文版的书都不是数学书.1.抽查10件产品,设事件A:至少有两件次品,则与事件A互斥的事件为( )A.恰有两件次品 B.恰有一件次品C.恰有两件正品 D.至少有两件正品B [事件“恰有一件次品”与事件A不会同时发生,故选B.]2.抛掷一枚骰子,“向上一面的点数是1或2”为事件A,“向上一面的点数是2或3”为事件B,则( )A.A⊆BB.A=BC.A∪B表示向上一面的点数是1或2或3D.A∩B表示向上一面的点数是1或2或3C [设A={1,2},B={2,3},A∩B={2},A∪B={1,2,3},所以A∪B表示向上一面的点数是1或2或3.]3.抛掷一枚质地均匀的正方体骰子,事件E={向上的点数为偶数},F={向上的点数为质数},则E∩F=________.{向上的点数为2} [E={向上的点数为偶数}={2,4,6},F={向上的点数为质数}={2,3,5},∴E∩F={向上的点数为2}.]4.从一批产品(既有正品也有次品)中取出3件产品,设A=“3件产品全不是次品”,B=“3件产品全是次品”,C=“3件产品不全是次品”,则下列结论正确的是________(填写序号).①A与B互斥;②B与C互斥;③A与C互斥;④A与B对立;⑤B与C对立.①②⑤ [A=“3件产品全不是次品”,指的是3件产品全是正品,B=“3件产品全是次品”,C=“3件产品不全是次品”,它包括1件次品2件正品,2件次品1件正品,3件全是正品3个事件,由此知:A与B是互斥事件,但不对立;A与C是包含关系,不是互斥事件,更不是对立事件;B与C是互斥事件,也是对立事件.所以正确结论的序号为①②⑤.]回顾本节知识,自主完成以下问题:1.事件间的关系和运算有哪些?如何用符号表示? [提示] 事件关系或运算的含义2.互斥事件与对立事件有什么关系?[提示] (1)对立事件一定是互斥事件,但互斥事件不一定是对立事件.(2)从集合的观点来判断:设事件A与B所含的样本点组成的集合分别是A,B,若A,B互斥,则A∩B=∅,若A,B对立,则A∩B=∅,且A∪B=Ω,即∁ΩB=A,∁ΩA=B.互斥事件A与B的和A+B可理解为集合A∪B.课时分层作业(四十五) 事件的关系和运算一、选择题1.掷一枚骰子,设事件A={出现的点数不小于5},B={出现的点数为偶数},则事件A与事件B的关系是( )A.A⊆BB.A∩B={出现的点数为6}C.事件A与B互斥D.事件A与B是对立事件B [由题意事件A表示出现的点数是5或6;事件B表示出现的点数是2或4或6.故A∩B={出现的点数为6}.]2.打靶3次,事件Ai=“击中i发”,其中i=0,1,2,3.那么A=A1∪A2∪A3表示( )A.全部击中 B.至少击中1发C.至少击中2发 D.全部未击中B [A1∪A2∪A3表示的是A1,A2,A3这三个事件中至少有一个发生,即可能击中1发、2发或3发,故选B.]3.从1,2,3,4这4个数中,任取2个数求和,那么“这2个数的和大于4”为事件A,“这2个数的和为偶数” 为事件B,则A∪B和A∩B包含的样本点数分别为( )A.1,6 B.4,2C.5,1 D.6,1C [从1,2,3,4这4个数中,任取2个数求和,则试验的样本空间为Ω={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}.其中事件A包含的样本点有:(1,4),(2,3),(2,4),(3,4),共4个.事件B包含的样本点有:(1,3),(2,4),共2个.所以事件A∪B包含的样本点有:(1,3),(1,4),(2,3),(2,4),(3,4),共5个.事件A∩B包含的样本点有:(2,4),共1个.]4.已知100件产品中有5件次品,从这100件产品中任意取出3件,设E表示事件“3件产品全不是次品”,F表示事件“3件产品全是次品”,G表示事件“3件产品中至少有1件次品”,则下列结论正确的是( )A.F与G互斥B.E与G互斥但不对立C.E,F,G任意两个事件均互斥D.E与G互为对立D [由题意得事件E与事件F不可能同时发生,是互斥事件;事件E与事件G不可能同时发生,是互斥事件;当事件F发生时,事件G一定发生,所以事件F与事件G不是互斥事件,故A,C不正确;事件E与事件G中必有一个发生,所以事件E与事件G互为对立,故B不正确,D正确.]5.(多选)某小组有三名男生和两名女生,从中任选两名学生去参加比赛,则下列各对事件中为互斥事件的是( )A.恰有一名男生和全是男生B.至少有一名男生和至少有一名女生C.至少有一名男生和全是男生D.至少有一名男生和全是女生AD [A中两个事件是互斥事件,恰有一名男生即选出的两名学生中有一名男生和一名女生,它与全是男生不可能同时发生;B中两个事件不是互斥事件;C中两个事件不是互斥事件;D中两个事件是互斥事件,至少有一名男生与全是女生显然不可能同时发生.]二、填空题6.设某随机试验的样本空间Ω={0,1,2,3,4,5,6,7,8},A={2,3,4},B={3,4,5},C={5,6,7}.则A∪B=________; A∩B=________.[答案] {2,3,4,5} {5}7.甲、乙两人破译同一个密码,令甲、乙破译出密码分别为事件A,B,则AB∪AB表示的含义是________,事件“密码被破译”可表示为________.[答案] 只有一人破译密码 AB∪AB∪AB8.袋中装有9个白球,2个红球,从中任取3个球,则:①恰有1个红球和全是白球;②至少有1个红球和全是白球;③至少有1个红球和至少有2个白球;④至少有1个白球和至少有1个红球.在上述事件中,是对立事件的为________.② [①是互斥不对立的事件,②是对立事件,③④不是互斥事件.]三、解答题9.用红、黄、蓝三种不同的颜色给大小相同的三个圆随机涂色,每个圆只涂一种颜色.设事件A=“三个圆的颜色全不相同”,事件B=“三个圆的颜色不全相同”,事件C=“其中两个圆的颜色相同”,事件D=“三个圆的颜色全相同”.(1)写出试验的样本空间;(2)用集合的形式表示事件A,B,C,D;(3)事件B与事件C有什么关系?事件A和B的交事件与事件D有什么关系?说明理由.[解] (1)由题意可知三个圆可能颜色一样,也可能有两个圆颜色一样,另一个圆异色,还可能三个圆异色,则试验的样本空间Ω={(红,红,红),(黄,黄,黄),(蓝,蓝,蓝),(红,红,黄),(红,红,蓝),(蓝,蓝,红),(蓝,蓝,黄),(黄,黄,红),(黄,黄,蓝),(红,黄,蓝)}.(2)A={(红,黄,蓝)}.B={(红,红,黄),(红,红,蓝),(蓝,蓝,红),(蓝,蓝,黄),(黄,黄,红),(黄,黄,蓝),(红,黄,蓝)}.C={(红,红,黄),(红,红,蓝),(蓝,蓝,红),(蓝,蓝,黄),(黄,黄,红),(黄,黄,蓝)}.D={(红,红,红),(黄,黄,黄),(蓝,蓝,蓝)}.(3)由(2)可知C⊆B,A∩B=A,A与D互斥,所以事件B包含事件C,事件A和B的交事件与事件D互斥.10.把红、蓝、黑、白4张纸牌随机地分给甲、乙、丙、丁4个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是( )A.对立事件 B.互斥但不对立事件C.不可能事件 D.以上说法都不对B [因为只有1张红牌,所以这两个事件不可能同时发生,所以它们是互斥事件;但这两个事件加起来并不是总体事件,所以它们不是对立事件.]11.(多选)(2022·江苏南京六校联考)对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设事件A=“两弹都击中飞机”,事件B=“两弹都没击中飞机”,事件C=“恰有一弹击中飞机”,事件D=“至少有一弹击中飞机”,下列关系正确的是( )A.A⊆D B.B∩D=∅C.A∪C=D D.A∪B=B∪DABC [“恰有一弹击中飞机”指第一枚击中第二枚没中或第一枚没中第二枚击中.“至少有一弹击中飞机”包含两种情况:一种是恰有一弹击中,另一种是两弹都击中.∴A∪B≠B∪D.]12.(多选)在一次随机试验中,A,B,C,D是彼此互斥的事件,且A+B+C+D是必然事件,则下列说法正确的是( )A.A+B与C是互斥事件,也是对立事件B.B+C与D是互斥事件,但不是对立事件C.A+C与B+D是互斥事件,但不是对立事件D.A与B+C+D是互斥事件,也是对立事件BD [由于A,B,C,D彼此互斥,且A+B+C+D是必然事件,故事件的关系如图所示.由图可知,任何一个事件与其余三个事件的和事件互为对立,任何两个事件的和事件与其余两个事件中任何一个是互斥事件,任何两个事件的和事件与其余两个事件的和事件互为对立,故B,D中的说法正确.]13.如图所示,事件A=“甲元件正常”,B=“乙元件正常”,C=“丙元件正常”.则A∪B∪C表示的含义为________,A∩B∩C表示的含义为________.[答案] 电路工作正常 电路工作不正常14.对一箱产品进行随机抽查检验,如果查出2个次品就停止检查,最多检查3个产品.写出该试验的样本空间Ω,并用样本点表示事件:A={至少有2个正品},B={至少1个产品是正品};并判断事件A与事件B的关系.[解] 依题意,检查是有序地逐个进行,至少检查2个,最多检查3个产品.如果用“0”表示查出次品,用“1”表示查出正品,那么样本点至少是一个二位数,至多是一个三位数的有序数列.样本空间Ω={00,010,011,100,101,110,111}.A={011,101,110,111}.B={010,011,100,101,110,111},所以A⊆B.15.某连锁火锅城开业之际,为吸引更多的消费者,开展抽奖活动,前20位顾客可参加如下活动:摇动如图所示的游戏转盘(上面扇形的圆心角都相等),顾客可以免费获得按照指针所指区域的数字10倍金额的店内菜品或饮品,最高120元,每人只能参加一次这个活动.记事件A:“获得不多于30元菜品或饮品”.(1)求事件A包含的基本事件;(2)写出事件A的对立事件,以及事件A的一个互斥事件.[解] (1)事件A包含的基本事件为:{获得10元菜品或饮品},{获得20元菜品或饮品},{获得30元菜品或饮品}.(2)事件A的对立事件是A=“获得多于30元但不多于120元菜品或饮品”,事件A的一个互斥事件为:“获得40元菜品或饮品”(答案不唯一).学习任务1.了解随机事件的并、交与互斥的含义.(数学抽象)2.能结合实例进行随机事件的并、交运算.(数学运算)定义表示法图示包含关系若事件A发生,事件B一定发生,称事件B包含事件A(或事件A包含于事件B)B⊇A(或A⊆B)相等关系如果事件B包含事件A,事件A也包含事件B,则称事件A与事件B相等A=B互斥事件如果事件A与事件B不能同时发生,称事件A与事件B互斥(或互不相容)若A∩B=∅,则A与B互斥对立事件如果事件A和事件B在任何一次试验中有且仅有一个发生,称事件A与事件B互为对立,事件A的对立事件记为A若A∩B=∅,且A∪B=Ω,则A与B对立定义表示法图示并事件事件A与事件B至少有一个发生,称这个事件为事件A与事件B的并事件(或和事件)A∪B(或A+B)交事件事件A与事件B同时发生,称这样的一个事件为事件A与事件B的交事件(或积事件)A∩B(或AB)定义法判断互斥事件、对立事件一般用定义判断.不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两个事件为对立事件,对立事件一定是互斥事件集合法(1)由各个事件所含的结果组成的集合彼此的交集为空集,则事件互斥.(2)事件A的对立事件所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集事件关系或运算含义符号表示包含A发生导致B发生A⊆B并事件(和事件)A与B至少一个发生A∪B或A+B交事件(积事件)A与B同时发生A∩B或AB互斥(互不相容)A与B不能同时发生A∩B=∅互为对立A与B有且仅有一个发生A∩B=∅,A∪B=Ω