还剩3页未读,
继续阅读
所属成套资源:全套人教A版高中数学必修第二册 课时讲义
成套系列资料,整套一键下载
人教A版高中数学必修第二册第8章微专题3二面角的常见求法讲义
展开
这是一份人教A版高中数学必修第二册第8章微专题3二面角的常见求法讲义,共6页。
微专题3 二面角的常见求法求二面角是常见题型,根据所求两面是否有公共棱可分为两类:有棱二面角、无棱二面角,对于前者的二面角通常采用找点,连线或平移等手段来找出二面角的平面角;而对于无棱二面角,一般通过构造图形如延展平面或找公垂面等方法使其“无棱”而“现棱”,进一步找二面角的平面角. 类型1 定义法求二面角方法:如图所示,以二面角的棱a上的任意一点O为端点,在两个面内分别作垂直于a的两条射线OA,OB,则∠AOB为此二面角的平面角.【例1】 如图,在三棱锥V-ABC中,VA=VB=AC=BC=2,AB=23,VC=1,求二面角V-AB-C的大小.[尝试解答] 类型2 三垂线法求二面角方法:在平面α内选一点A向另一个平面β作垂线AB,垂足为B,再过点B向棱a作垂线BO,垂足为O,连接AO,则∠AOB就是二面角的平面角.【例2】 如图,在三棱锥S-ABC中,∠SAB=∠SAC=∠ABC=90°,SA=AB,SB=BC.(1)证明:平面SBC⊥平面SAB;(2)求二面角A-SC-B的平面角的正弦值.[尝试解答] 类型3 垂面法求二面角方法:过二面角内一点A作AB⊥α于B,作AC⊥β于C,平面ABC交棱a于点O,则∠BOC就是二面角的平面角.【例3】 如图,在三棱锥S-ABC中,SA⊥底面ABC,AB⊥BC,DE垂直平分SC且分别交AC,SC于点D,E,又SA=AB,SB=BC,求二面角E-BD-C的大小.[尝试解答] 类型4 射影面积法方法:已知平面β内一个多边形的面积为S,它在平面α内的射影图形的面积为S射影,平面α和平面β所成的二面角的大小为θ,则cos θ=S射影S.这个方法对于无棱二面角的求解很简便.以多边形射影为三角形为例证明,其他情形可自证.证明:如图,平面β内的△ABC在平面α的射影为△A′BC,作AD⊥BC于D,连接A′D.∵AA′⊥α于A′,D∈α,∴AD在α内的射影为A′D.∵AA′⊥α,又BC⊂α,∴AA′⊥BC,又AD⊥BC,AD∩A′A=A,AD,A′A⊂平面AA′D,∴BC⊥平面AA′D,又A′D⊂平面AA′D,∴A′D⊥BC.∴∠ADA′为二面角α-BC-β的平面角.设△ABC和△A′BC的面积分别为S和S′,∠ADA′=θ,则S=12BC·AD,S′=12BC·A′D.∴cos θ=A'DAD=12BC·A'D12BC·AD=S'S.【例4】 在四棱锥P-ABCD中,四边形ABCD为正方形,PA⊥平面ABCD,PA=AB=a,求平面PBA与平面PCD所成二面角的大小.[尝试解答]
微专题3 二面角的常见求法求二面角是常见题型,根据所求两面是否有公共棱可分为两类:有棱二面角、无棱二面角,对于前者的二面角通常采用找点,连线或平移等手段来找出二面角的平面角;而对于无棱二面角,一般通过构造图形如延展平面或找公垂面等方法使其“无棱”而“现棱”,进一步找二面角的平面角. 类型1 定义法求二面角方法:如图所示,以二面角的棱a上的任意一点O为端点,在两个面内分别作垂直于a的两条射线OA,OB,则∠AOB为此二面角的平面角.【例1】 如图,在三棱锥V-ABC中,VA=VB=AC=BC=2,AB=23,VC=1,求二面角V-AB-C的大小.[尝试解答] 类型2 三垂线法求二面角方法:在平面α内选一点A向另一个平面β作垂线AB,垂足为B,再过点B向棱a作垂线BO,垂足为O,连接AO,则∠AOB就是二面角的平面角.【例2】 如图,在三棱锥S-ABC中,∠SAB=∠SAC=∠ABC=90°,SA=AB,SB=BC.(1)证明:平面SBC⊥平面SAB;(2)求二面角A-SC-B的平面角的正弦值.[尝试解答] 类型3 垂面法求二面角方法:过二面角内一点A作AB⊥α于B,作AC⊥β于C,平面ABC交棱a于点O,则∠BOC就是二面角的平面角.【例3】 如图,在三棱锥S-ABC中,SA⊥底面ABC,AB⊥BC,DE垂直平分SC且分别交AC,SC于点D,E,又SA=AB,SB=BC,求二面角E-BD-C的大小.[尝试解答] 类型4 射影面积法方法:已知平面β内一个多边形的面积为S,它在平面α内的射影图形的面积为S射影,平面α和平面β所成的二面角的大小为θ,则cos θ=S射影S.这个方法对于无棱二面角的求解很简便.以多边形射影为三角形为例证明,其他情形可自证.证明:如图,平面β内的△ABC在平面α的射影为△A′BC,作AD⊥BC于D,连接A′D.∵AA′⊥α于A′,D∈α,∴AD在α内的射影为A′D.∵AA′⊥α,又BC⊂α,∴AA′⊥BC,又AD⊥BC,AD∩A′A=A,AD,A′A⊂平面AA′D,∴BC⊥平面AA′D,又A′D⊂平面AA′D,∴A′D⊥BC.∴∠ADA′为二面角α-BC-β的平面角.设△ABC和△A′BC的面积分别为S和S′,∠ADA′=θ,则S=12BC·AD,S′=12BC·A′D.∴cos θ=A'DAD=12BC·A'D12BC·AD=S'S.【例4】 在四棱锥P-ABCD中,四边形ABCD为正方形,PA⊥平面ABCD,PA=AB=a,求平面PBA与平面PCD所成二面角的大小.[尝试解答]
相关资料
更多