开学活动
搜索
    上传资料 赚现金

    2024全国卷高考数学真题分类汇编学生及教师版——数列

    2024全国卷高考数学真题分类汇编学生及教师版——数列第1页
    2024全国卷高考数学真题分类汇编学生及教师版——数列第2页
    2024全国卷高考数学真题分类汇编学生及教师版——数列第3页
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024全国卷高考数学真题分类汇编学生及教师版——数列

    展开

    这是一份2024全国卷高考数学真题分类汇编学生及教师版——数列,共6页。试卷主要包含了记为数列的前项和,且等内容,欢迎下载使用。
    2.(2024年高考全国甲卷数学(理))等差数列的前项和为,若,,则( )
    A.B.C.1D.2
    3.(2024年高考全国甲卷数学(理))记为数列的前项和,且.
    (1)求的通项公式;
    (2)设,求数列的前项和为.
    4.(2024年新课标全国Ⅰ卷)设m为正整数,数列是公差不为0的等差数列,若从中删去两项和后剩余的项可被平均分为组,且每组的4个数都能构成等差数列,则称数列是可分数列.
    (1)写出所有的,,使数列是可分数列;
    (2)当时,证明:数列是可分数列;
    (3)从中一次任取两个数和,记数列是可分数列的概率为,证明:.
    10.数列
    1.(2024年新课标全国Ⅱ卷)记为等差数列的前n项和,若,,则 .
    【详解】因为数列为等差数列,则由题意得,解得,
    则.
    故答案为:.
    2.(2024年高考全国甲卷数学(理))等差数列的前项和为,若,,则( )
    A.B.C.1D.2
    【详解】由,则,
    则等差数列的公差,故.
    故选:B.
    3.(2024年高考全国甲卷数学(理))记为数列的前项和,且.
    (1)求的通项公式;
    (2)设,求数列的前项和为.
    【详解】(1)当时,,解得.
    当时,,所以即,
    而,故,故,
    ∴数列是以4为首项,为公比的等比数列,
    所以.
    (2),
    所以

    所以

    .
    4.(2024年新课标全国Ⅰ卷)设m为正整数,数列是公差不为0的等差数列,若从中删去两项和后剩余的项可被平均分为组,且每组的4个数都能构成等差数列,则称数列是可分数列.
    (1)写出所有的,,使数列是可分数列;
    (2)当时,证明:数列是可分数列;
    (3)从中一次任取两个数和,记数列是可分数列的概率为,证明:.
    【详解】(1)首先,我们设数列的公差为,则.
    由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,
    故我们可以对该数列进行适当的变形,
    得到新数列,然后对进行相应的讨论即可.
    换言之,我们可以不妨设,此后的讨论均建立在该假设下进行.
    回到原题,第1小问相当于从中取出两个数和,使得剩下四个数是等差数列.
    那么剩下四个数只可能是,或,或.
    所以所有可能的就是.
    (2)由于从数列中取出和后,剩余的个数可以分为以下两个部分,共组,使得每组成等差数列:
    ①,共组;
    ②,共组.
    (如果,则忽略②)
    故数列是可分数列.
    (3)定义集合,.
    下面证明,对,如果下面两个命题同时成立,
    则数列一定是可分数列:
    命题1:或;
    命题2:.
    我们分两种情况证明这个结论.
    第一种情况:如果,且.
    此时设,,.
    则由可知,即,故.
    此时,由于从数列中取出和后,
    剩余的个数可以分为以下三个部分,共组,使得每组成等差数列:
    ①,共组;
    ②,共组;
    ③,共组.
    (如果某一部分的组数为,则忽略之)
    故此时数列是可分数列.
    第二种情况:如果,且.
    此时设,,.
    则由可知,即,故.
    由于,故,从而,这就意味着.
    此时,由于从数列中取出和后,剩余的个数可以分为以下四个部分,共组,使得每组成等差数列:
    ①,共组;
    ②,,共组;
    ③全体,其中,共组;
    ④,共组.
    (如果某一部分的组数为,则忽略之)
    这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含个行,个列的数表以后,个列分别是下面这些数:
    ,,,.
    可以看出每列都是连续的若干个整数,它们再取并以后,将取遍中除开五个集合,,,,中的十个元素以外的所有数.
    而这十个数中,除开已经去掉的和以外,剩余的八个数恰好就是②中出现的八个数.
    这就说明我们给出的分组方式满足要求,故此时数列是可分数列.
    至此,我们证明了:对,如果前述命题1和命题2同时成立,则数列一定是可分数列.
    然后我们来考虑这样的的个数.
    首先,由于,和各有个元素,故满足命题1的总共有个;
    而如果,假设,则可设,,代入得.
    但这导致,矛盾,所以.
    设,,,则,即.
    所以可能的恰好就是,对应的分别是,总共个.
    所以这个满足命题1的中,不满足命题2的恰好有个.
    这就得到同时满足命题1和命题2的的个数为.
    当我们从中一次任取两个数和时,总的选取方式的个数等于.
    而根据之前的结论,使得数列是可分数列的至少有个.
    所以数列是可分数列的概率一定满足
    .
    这就证明了结论.

    相关试卷

    2024全国卷高考数学真题分类汇编学生及教师版——逻辑命题:

    这是一份2024全国卷高考数学真题分类汇编学生及教师版——逻辑命题,共3页。

    2024全国卷高考数学真题分类汇编学生及教师版——解析几何:

    这是一份2024全国卷高考数学真题分类汇编学生及教师版——解析几何,共15页。试卷主要包含了已知和为椭圆上两点.,设椭圆的右焦点为,点在上,且轴,已知双曲线,点在上,为常数,等内容,欢迎下载使用。

    2024全国卷高考数学真题分类汇编学生及教师版——复数:

    这是一份2024全国卷高考数学真题分类汇编学生及教师版——复数,共2页。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map