函数的奇偶性与周期性课件-2025届高三数学一轮复习
展开
这是一份函数的奇偶性与周期性课件-2025届高三数学一轮复习,共41页。PPT课件主要包含了命题说明,必备知识·逐点夯实,核心考点·分类突破,ln2,5+∞等内容,欢迎下载使用。
【课标解读】【课程标准】1.了解函数奇偶性的概念和几何意义.2.会运用基本初等函数的图象分析函数的奇偶性.3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.【核心素养】数学抽象、逻辑推理、直观想象.
知识梳理·归纳1.函数的奇偶性微点拨 奇、偶函数定义域的特点是关于原点对称,函数的定义域关于原点对称是函数具有奇偶性的必要不充分条件.
f(-x)=f(x)
f(-x)=-f(x)
2.函数的周期性(1)周期函数:设函数f(x)的定义域为D,如果存在一个非零常数T,使得对每一个x∈D都有x+T∈D,且f(x+T)=_____,那么函数f(x)就叫做周期函数.非零常数___叫做这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个______的正数,那么这个最小的正数就叫做f(x)的最小正周期(若不特别说明,T一般就是指最小正周期).微点拨存在一个非零常数T,使f(x+T)=f(x)为恒等式,即自变量x每增加一个T后,函数值就会重复出现一次.
2.(2023·上海高考)下列函数是偶函数的是( )A.y=sin xB.y=cs xC.y=x3D.y=2x【解析】选B.对于A,由正弦函数的性质可知,y=sin x为奇函数;对于B,由余弦函数的性质可知,y=cs x为偶函数;对于C,由幂函数的性质可知,y=x3为奇函数;对于D,由指数函数的性质可知,y=2x为非奇非偶函数.
解题技法1.判断函数的奇偶性的方法(1)定义法:若函数的定义域不是关于原点对称的区间,则可立即判断该函数既不是奇函数也不是偶函数;若函数的定义域是关于原点对称的区间,再判断f(-x)是否等于±f(x).(2)图象法:奇(或偶)函数的充要条件是它的图象关于原点(或y轴)对称.(3)性质法:偶函数的和、差、积、商(分母不为零)仍为偶函数;奇函数的和、差仍为奇函数;奇(偶)数个奇函数的积、商(分母不为零)为奇(偶)函数;一个奇函数与一个偶函数的积为奇函数.(注:利用上述结论时要注意各函数的定义域)
2.已知函数f(x)=sin x,g(x)=ex+e-x,则下列结论正确的是( )A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数【解析】选C.选项A,f(x)g(x)=(ex+e-x)sin x,f(-x)g(-x)=(e-x+ex)sin(-x)=-(ex+e-x)sin x=-f(x)g(x),是奇函数,结论错误;选项B,|f(x)|g(x)=|sin x|(ex+e-x),|f(-x)|g(-x)=|sin(-x)|(e-x+ex)=|sin x|(ex+e-x)=|f(x)|g(x),是偶函数,结论错误;选项C,f(x)|g(x)|=|ex+e-x|sin x,f(-x)|g(-x)|=|e-x+ex|sin(-x)=-|ex+e-x|sin x=-f(x)|g(x)|,是奇函数,结论正确;选项D,|f(x)g(x)|=|(ex+e-x)sin x|,|f(-x)g(-x)|=|(e-x+ex)sin(-x)|=|(ex+e-x)sin x|=|f(x)g(x)|,是偶函数,结论错误.
(2)设f(x)为奇函数,且当x≥0时,f(x)=ex-1,则当x0的解集为 . 【解析】因为f(x-2)为奇函数,所以f(x-2)的图象的对称中心为(0,0).又因为f(x)的图象可由f(x-2)的图象向左平移2个单位长度得到,所以f(x)的图象关于点(-2,0)中心对称.因为f(x)在[-2,+∞)上单调递减,所以f(x)在(-∞,-2]上也单调递减,所以f(3-x)>0=f(-2),即3-x5,所以解集为(5,+∞).
考点三函数周期性及应用[例5](1)(2023·长沙模拟)定义在R上的函数f(x)满足f(x+1)=f(x)-2,则下列是周期函数的是( )A.y=f(x)-xB.y=f(x)+xC.y=f(x)-2xD.y=f(x)+2x【解析】选D.依题意,定义在R上的函数f(x)满足f(x+1)=f(x)-2,所以f(x+1)+2(x+1)=f(x)+2x,所以y=f(x)+2x是周期为1的周期函数.
解题技法函数周期性有关问题的求解策略(1)判断函数的周期性只需证明f(x+T)=f(x)(T≠0)便可得到函数是周期函数,且周期为T,函数的周期性常与函数的其他性质综合命题.(2)根据函数的周期性,可以由函数局部的性质得到函数的整体性质,即周期性与奇偶性都具有将未知区间上的问题转化到已知区间的功能.
2.设f(x)是定义在R上以2为周期的偶函数,当x∈[0,1]时,f(x)=lg2(x+1),则函数f(x)在[1,2]上的解析式是 . 【解析】令x∈[-1,0],则-x∈[0,1],结合题意可得f(x)=f(-x)=lg2(-x+1),令x∈[1,2],则x-2∈[-1,0],故f(x)=f(x-2)=lg2[-(x-2)+1]=lg2(3-x),故函数f(x)在[1,2]上的解析式是f(x)=lg2(3-x).
f(x)=lg2(3-x)
考点四函数的对称性及应用[例6](1)(多选题)已知函数y=f(x)的图象关于直线x=1对称,则下列结论成立的是( )A.f(x+1)为偶函数B.f(1+x)=f(1-x)C.f(1+x)+f(1-x)=0D.f(1)=0【解析】选AB.由于y=f(x)的图象关于直线x=1对称,则f(1+x)=f(1-x),所以f(x+1)为偶函数,故A,B选项正确,C选项错误;如f(x)=(x-1)2+1,函数f(x)的图象关于直线x=1对称,但f(1)=1≠0,故D选项错误.
(2)(2023·海口模拟)已知函数f(x)是定义在R上的奇函数,函数g(x)=|x-2|·f(x)的图象关于直线x=2对称,若f(-1)=-1,则g(3)=( )A.5B.1C.-1D.-5【解析】选B.因为g(x)的图象关于直线x=2对称,则g(x+2)=|x|f(x+2)是偶函数,g(2-x)=|-x|f(2-x)=|x|f(2-x),所以|x|f(2-x)=|x|f(x+2)对任意的x∈R恒成立,所以f(2-x)=f(2+x).因为f(-1)=-1且f(x)为奇函数,所以f(3)=f(2+1)=f(2-1)=-f(-1)=1,因此g(3)=|3-2|f(3)=1.
相关课件
这是一份§2.3 函数的奇偶性、周期性 课件-2025高考数学一轮复习,共60页。PPT课件主要包含了落实主干知识,函数的奇偶性,f-x=fx,探究核心题型,-ex+2x+1,课时精练,不唯一,综上所述fx=等内容,欢迎下载使用。
这是一份2.3函数的奇偶性与周期性课件2022届高考数学(文科)一轮复习基础过关,共51页。
这是一份高考数学(理数)一轮复习2.3《函数的奇偶性与周期性》课件(含详解),共47页。