年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2024年高考数学真题分类汇编06:空间向量与立体几何

    2024年高考数学真题分类汇编06:空间向量与立体几何第1页
    2024年高考数学真题分类汇编06:空间向量与立体几何第2页
    2024年高考数学真题分类汇编06:空间向量与立体几何第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年高考数学真题分类汇编06:空间向量与立体几何

    展开

    这是一份2024年高考数学真题分类汇编06:空间向量与立体几何,共21页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    一、单选题
    1.(2024·全国)已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为,则圆锥的体积为( )
    A.B.C.D.
    2.(2024·全国)已知正三棱台的体积为,,,则与平面ABC所成角的正切值为( )
    A.B.1C.2D.3
    3.(2024·全国)设是两个平面,是两条直线,且.下列四个命题:
    ①若,则或 ②若,则
    ③若,且,则 ④若与和所成的角相等,则
    其中所有真命题的编号是( )
    A.①③B.②④C.①②③D.①③④
    4.(2024·北京)已知以边长为4的正方形为底面的四棱锥,四条侧棱分别为4,4,,,则该四棱锥的高为( )
    A.B.C.D.
    5.(2024·天津)若为两条不同的直线,为一个平面,则下列结论中正确的是( )
    A.若,,则B.若,则
    C.若,则D.若,则与相交
    6.(2024·天津)一个五面体.已知,且两两之间距离为1.并已知.则该五面体的体积为( )
    A.B.C.D.
    二、多选题
    7.(2024·全国)抛物线C:的准线为l,P为C上的动点,过P作的一条切线,Q为切点,过P作l的垂线,垂足为B,则( )
    A.l与相切
    B.当P,A,B三点共线时,
    C.当时,
    D.满足的点有且仅有2个
    三、填空题
    8.(2024·全国)已知甲、乙两个圆台上、下底面的半径均为和,母线长分别为和,则两个圆台的体积之比 .
    9.(2024·北京)已知三个圆柱的体积为公比为10的等比数列.第一个圆柱的直径为65mm,第二、三个圆柱的直径为325mm,第三个圆柱的高为230mm,求前两个圆柱的高度分别为 .
    10.(2024·上海)已知点B在点C正北方向,点D在点C的正东方向,,存在点A满足,则 (精确到0.1度)
    四、解答题
    11.(2024·全国)如图,四棱锥中,底面ABCD,,.
    (1)若,证明:平面;
    (2)若,且二面角的正弦值为,求.
    12.(2024·全国)如图,平面四边形ABCD中,,,,,,点E,F满足,,将沿EF对折至,使得.
    (1)证明:;
    (2)求面PCD与面PBF所成的二面角的正弦值.
    13.(2024·全国)如图,在以A,B,C,D,E,F为顶点的五面体中,四边形ABCD与四边形ADEF均为等腰梯形,,,,为的中点.
    (1)证明:平面;
    (2)求点到的距离.
    14.(2024·全国)如图,在以A,B,C,D,E,F为顶点的五面体中,四边形ABCD与四边形ADEF均为等腰梯形,,,,为的中点.
    (1)证明:平面;
    (2)求二面角的正弦值.
    15.(2024·北京)已知四棱锥P-ABCD,,,,,E是上一点,.
    (1)若F是PE中点,证明:平面.
    (2)若平面,求平面与平面夹角的余弦值.
    16.(2024·天津)已知四棱柱中,底面为梯形,,平面,,其中.是的中点,是的中点.

    (1)求证平面;
    (2)求平面与平面的夹角余弦值;
    (3)求点到平面的距离.
    17.(2024·上海)如图为正四棱锥为底面的中心.
    (1)若,求绕旋转一周形成的几何体的体积;
    (2)若为的中点,求直线与平面所成角的大小.
    参考答案:
    1.B
    【分析】设圆柱的底面半径为,根据圆锥和圆柱的侧面积相等可得半径的方程,求出解后可求圆锥的体积.
    【解析】设圆柱的底面半径为,则圆锥的母线长为,
    而它们的侧面积相等,所以即,
    故,故圆锥的体积为.
    故选:B.
    2.B
    【分析】解法一:根据台体的体积公式可得三棱台的高,做辅助线,结合正三棱台的结构特征求得,进而根据线面夹角的定义分析求解;解法二:将正三棱台补成正三棱锥,与平面ABC所成角即为与平面ABC所成角,根据比例关系可得,进而可求正三棱锥的高,即可得结果.
    【解析】解法一:分别取的中点,则,
    可知,
    设正三棱台的为,
    则,解得,
    如图,分别过作底面垂线,垂足为,设,
    则,,
    可得,
    结合等腰梯形可得,
    即,解得,
    所以与平面ABC所成角的正切值为;
    解法二:将正三棱台补成正三棱锥,
    则与平面ABC所成角即为与平面ABC所成角,
    因为,则,
    可知,则,
    设正三棱锥的高为,则,解得,
    取底面ABC的中心为,则底面ABC,且,
    所以与平面ABC所成角的正切值.
    故选:B.
    3.A
    【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③.
    【解析】对①,当,因为,,则,
    当,因为,,则,
    当既不在也不在内,因为,,则且,故①正确;
    对②,若,则与不一定垂直,故②错误;
    对③,过直线分别作两平面与分别相交于直线和直线,
    因为,过直线的平面与平面的交线为直线,则根据线面平行的性质定理知,
    同理可得,则,因为平面,平面,则平面,
    因为平面,,则,又因为,则,故③正确;
    对④,若与和所成的角相等,如果,则,故④错误;
    综上只有①③正确,
    故选:A.
    4.D
    【分析】取点作辅助线,根据题意分析可知平面平面,可知平面,利用等体积法求点到面的距离.
    【解析】如图,底面为正方形,
    当相邻的棱长相等时,不妨设,
    分别取的中点,连接,
    则,且,平面,
    可知平面,且平面,
    所以平面平面,
    过作的垂线,垂足为,即,
    由平面平面,平面,
    所以平面,
    由题意可得:,则,即,
    则,可得,
    所以四棱锥的高为.
    当相对的棱长相等时,不妨设,,
    因为,此时不能形成三角形,与题意不符,这样情况不存在.
    故选:D.
    5.C
    【分析】根据线面平行的性质可判断AB的正误,根据线面垂直的性质可判断CD的正误.
    【解析】对于A,若,,则平行或异面,故A错误.
    对于B,若,则平行或异面或相交,故B错误.
    对于C,,过作平面,使得,
    因为,故,而,故,故,故C正确.
    对于D,若,则与相交或异面,故D错误.
    故选:C.
    6.C
    【分析】采用补形法,补成一个棱柱,求出其直截面,再利用体积公式即可.
    【解析】用一个完全相同的五面体(顶点与五面体一一对应)与该五面体相嵌,使得;;重合,
    因为,且两两之间距离为1.,
    则形成的新组合体为一个三棱柱,
    该三棱柱的直截面(与侧棱垂直的截面)为边长为1的等边三角形,侧棱长为,
    .
    故选:C.
    7.ABD
    【分析】A选项,抛物线准线为,根据圆心到准线的距离来判断;B选项,三点共线时,先求出的坐标,进而得出切线长;C选项,根据先算出的坐标,然后验证是否成立;D选项,根据抛物线的定义,,于是问题转化成的点的存在性问题,此时考察的中垂线和抛物线的交点个数即可,亦可直接设点坐标进行求解.
    【解析】A选项,抛物线的准线为,
    的圆心到直线的距离显然是,等于圆的半径,
    故准线和相切,A选项正确;
    B选项,三点共线时,即,则的纵坐标,
    由,得到,故,
    此时切线长,B选项正确;
    C选项,当时,,此时,故或,
    当时,,,,
    不满足;
    当时,,,,
    不满足;
    于是不成立,C选项错误;
    D选项,方法一:利用抛物线定义转化
    根据抛物线的定义,,这里,
    于是时点的存在性问题转化成时点的存在性问题,
    ,中点,中垂线的斜率为,
    于是的中垂线方程为:,与抛物线联立可得,
    ,即的中垂线和抛物线有两个交点,
    即存在两个点,使得,D选项正确.
    方法二:(设点直接求解)
    设,由可得,又,又,
    根据两点间的距离公式,,整理得,
    ,则关于的方程有两个解,
    即存在两个这样的点,D选项正确.
    故选:ABD
    8.
    【分析】先根据已知条件和圆台结构特征分别求出两圆台的高,再根据圆台的体积公式直接代入计算即可得解.
    【解析】由题可得两个圆台的高分别为,

    所以.
    故答案为:.
    9.
    【分析】根据体积为公比为10的等比数列可得关于高度的方程组,求出其解后可得前两个圆柱的高度.
    【解析】设第一个圆柱的高为,第二个圆柱的高为,则,
    故,,
    故答案为:.
    10.
    【分析】设,在和中分别利用正弦定理得到,,两式相除即可得到答案.
    【解析】设,
    在中,由正弦定理得,
    即’
    即①
    在中,由正弦定理得,
    即,即,②
    因为,得,
    利用计算器即可得,
    故答案为:.
    11.(1)证明见解析
    (2)
    【分析】(1)先证出平面,即可得,由勾股定理逆定理可得,从而 ,再根据线面平行的判定定理即可证出;
    (2)过点D作于,再过点作于,连接,根据三垂线法可知,即为二面角的平面角,即可求得,再分别用的长度表示出,即可解方程求出.
    【解析】(1)(1)因为平面,而平面,所以,
    又,,平面,所以平面,
    而平面,所以.
    因为,所以, 根据平面知识可知,
    又平面,平面,所以平面.
    (2)如图所示,过点D作于,再过点作于,连接,
    因为平面,所以平面平面,而平面平面,
    所以平面,又,所以平面,
    根据二面角的定义可知,即为二面角的平面角,
    即,即.
    因为,设,则,由等面积法可得,,
    又,而为等腰直角三角形,所以,
    故,解得,即.
    12.(1)证明见解析
    (2)
    【分析】(1)由题意,根据余弦定理求得,利用勾股定理的逆定理可证得,则,结合线面垂直的判定定理与性质即可证明;
    (2)由(1),根据线面垂直的判定定理与性质可证明,建立如图空间直角坐标系,利用空间向量法求解面面角即可.
    【解析】(1)由,
    得,又,在中,
    由余弦定理得,
    所以,则,即,
    所以,又平面,
    所以平面,又平面,
    故;
    (2)连接,由,则,
    在中,,得,
    所以,由(1)知,又平面,
    所以平面,又平面,
    所以,则两两垂直,建立如图空间直角坐标系,
    则,
    由是的中点,得,
    所以,
    设平面和平面的一个法向量分别为,
    则,,
    令,得,
    所以,
    所以,
    设平面和平面所成角为,则,
    即平面和平面所成角的正弦值为.
    13.(1)证明见详解;
    (2)
    【分析】(1)结合已知易证四边形为平行四边形,可证,进而得证;
    (2)作,连接,易证三垂直,结合等体积法即可求解.
    【解析】(1)因为为的中点,所以,
    四边形为平行四边形,所以,
    又因为平面,平面,所以平面;
    (2)如图所示,作交于,连接,因为四边形为等腰梯形,,所以,
    结合(1)为平行四边形,可得,
    又,所以为等边三角形,为中点,所以,
    又因为四边形为等腰梯形,为中点,所以,
    四边形为平行四边形,,所以为等腰三角形,
    与底边上中点重合,,,
    因为,所以,所以互相垂直,
    由等体积法可得,,
    ,,
    设点到的距离为,则,
    解得,即点到的距离为.
    14.(1)证明见详解;
    (2)
    【分析】(1)结合已知易证四边形为平行四边形,可证,进而得证;
    (2)作交于,连接,易证三垂直,采用建系法结合二面角夹角余弦公式即可求解.
    【解析】(1)因为为的中点,所以,
    四边形为平行四边形,所以,又因为平面,
    平面,所以平面;
    (2)如图所示,作交于,连接,
    因为四边形为等腰梯形,,所以,
    结合(1)为平行四边形,可得,又,
    所以为等边三角形,为中点,所以,
    又因为四边形为等腰梯形,为中点,所以,
    四边形为平行四边形,,
    所以为等腰三角形,与底边上中点重合,,,
    因为,所以,所以互相垂直,
    以方向为轴,方向为轴,方向为轴,建立空间直角坐标系,
    ,,,
    ,设平面的法向量为,
    平面的法向量为,
    则,即,令,得,即,
    则,即,令,得,
    即,,则,
    故二面角的正弦值为.
    15.(1)证明见解析
    (2)
    【分析】(1)取的中点为,接,可证四边形为平行四边形,由线面平行的判定定理可得平面.
    (2)建立如图所示的空间直角坐标系,求出平面和平面的法向量后可求夹角的余弦值.
    【解析】(1)取的中点为,接,则,
    而,故,故四边形为平行四边形,
    故,而平面,平面,
    所以平面.
    (2)
    因为,故,故,
    故四边形为平行四边形,故,所以平面,
    而平面,故,而,
    故建立如图所示的空间直角坐标系,
    则,

    设平面的法向量为,
    则由可得,取,
    设平面的法向量为,
    则由可得,取,
    故,
    故平面与平面夹角的余弦值为
    16.(1)证明见解析
    (2)
    (3)
    【分析】(1)取中点,连接,,借助中位线的性质与平行四边形性质定理可得,结合线面平行判定定理即可得证;
    (2)建立适当空间直角坐标系,计算两平面的空间向量,再利用空间向量夹角公式计算即可得解;
    (3)借助空间中点到平面的距离公式计算即可得解.
    【解析】(1)取中点,连接,,
    由是的中点,故,且,
    由是的中点,故,且,
    则有、,
    故四边形是平行四边形,故,
    又平面,平面,
    故平面;
    (2)以为原点建立如图所示空间直角坐标系,
    有、、、、、,
    则有、、,
    设平面与平面的法向量分别为、,
    则有,,
    分别取,则有、、,,
    即、,
    则,
    故平面与平面的夹角余弦值为;
    (3)由,平面的法向量为,
    则有,
    即点到平面的距离为.
    17.(1)
    (2)
    【分析】(1)根据正四棱锥的数据,先算出直角三角形的边长,然后求圆锥的体积;
    (2)连接,可先证平面,根据线面角的定义得出所求角为,然后结合题目数量关系求解.
    【解析】(1)正四棱锥满足且平面,由平面,则,
    又正四棱锥底面是正方形,由可得,,
    故,
    根据圆锥的定义,绕旋转一周形成的几何体是以为轴,为底面半径的圆锥,
    即圆锥的高为,底面半径为,
    根据圆锥的体积公式,所得圆锥的体积是
    (2)连接,由题意结合正四棱锥的性质可知,每个侧面都是等边三角形,
    由是中点,则,又平面,
    故平面,即平面,又平面,
    于是直线与平面所成角的大小即为,
    不妨设,则,,
    又线面角的范围是,
    故.即为所求.

    相关试卷

    2020年高考数学真题分类汇编06 平面向量 (含解析):

    这是一份2020年高考数学真题分类汇编06 平面向量 (含解析),共6页。

    近五年2018-2022高考数学真题分类汇编17空间向量与立体几何(Word版附解析):

    这是一份近五年2018-2022高考数学真题分类汇编17空间向量与立体几何(Word版附解析),共91页。试卷主要包含了单选题,多选题,解答题等内容,欢迎下载使用。

    2022高考数学真题分类汇编06 数列(学生与教师版):

    这是一份2022高考数学真题分类汇编06 数列(学生与教师版),文件包含2022高考数学真题分类汇编06数列教师版docx、2022高考数学真题分类汇编06数列学生版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map