- 2024年中考数学第二次模拟考试(湖南长沙卷) 试卷 0 次下载
- 2024年中考数学第二次模拟考试(盐城卷) 试卷 0 次下载
- 2024年中考数学第二次模拟考试(苏州卷) 试卷 0 次下载
- 2024年中考数学第二次模拟考试(贵州卷) 试卷 0 次下载
- 2024年中考数学第二次模拟考试(辽宁卷) 试卷 0 次下载
2024年中考数学第二次模拟考试(福建卷)
展开3、三模考试大概在中考前两周左右,三模是中考前的最后一次考前检验。三模学校会有意降低难度,目的是增强考生信心,难度只能是中上水平,主要也是对初中三年的知识做一个系统的检测,让学生知道中考的一个大致体系和结构。
2024年福建中考第二次模拟考试
数学·全解全析
第Ⅰ卷
一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)
1.截至2023年6月11日17时,全国冬小麦收获2.39亿亩,进度过七成半,将239000000用科学记数法表示应为( )
A. B. C. D.
【答案】B
【解析】
【分析】用科学记数法表示绝对值较大的数时,一般形式为,其中,为整数,且比原来的整数位数少1,据此判断即可.
【详解】解:,
故选:B.
【点睛】本题考查了科学记数法的表示方法,用科学记数法表示绝对值较大的数时,一般形式为,其中,为整数,且比原来的整数位数少1,解题的关键是要正确确定和的值.
2.下列图形中,为轴对称的图形的是( )
A B. C. D.
【答案】D
【解析】
【分析】根据轴对称图形的概念对各选项分析判断即可得解.
【详解】解:A、不是轴对称图形,故本选项不符合题意;
B、不是轴对称图形,故本选项不符合题意;
C、不是轴对称图形,故本选项不符合题意;
D、是轴对称图形,故本选项符合题意.
故选:D.
【点睛】本题主要考查了轴对称图形,解决问题的关键是熟练掌握轴对称图形的概念,轴对称图形概念,一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,这个图形就是轴对称图形.
3. 下列运算正确的是( )
A. B. () C. D. ()
【答案】C
【解析】
【分析】根据整式的计算法则:幂的乘方法则,同底数幂除法法则,同底数幂乘法法则,负整数指数幂计算法则分别计算判断.
【详解】解:A、 ,故该项原计算错误;
B、 (),故该项原计算错误;
C、 ,故该项原计算正确;
D、 (),故该项原计算错误;
故选:C.
【点睛】此题考查了整式的计算法则,熟记幂的乘方法则,同底数幂除法法则,同底数幂乘法法则,负整数指数幂计算法则是解题的关键.
4. 一元一次不等式组的解集为( )
A. B. C. D.
【答案】D
【解析】
【分析】第一个不等式解与第二个不等式的解,取公共部分即可.
【详解】解:
解不等式得:
结合得:不等式组的解集是,
故选:D.
【点睛】本题考查解一元一次不等式组,掌握解一元一次不等式组的一般步骤是解题的关键.
5. 若关于的一元二次方程有两个相等的实数根,则实数的值为( )
A. B. C. D. 9
【答案】C
【解析】
【分析】根据一元二次方程有两个相等的实数根,可得,进而即可求解.
【详解】解:∵关于的一元二次方程有两个相等的实数根,
∴.
解得:.
故选:C.
【点睛】本题考查了一元二次方程 (为常数)的根的判别式,理解根的判别式对应的根的三种情况是解题的关键.当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根.
6. 如图,海中有一小岛A,在B点测得小岛A在北偏东30°方向上,渔船从B点出发由西向东航行10到达C点,在C点测得小岛A恰好在正北方向上,此时渔船与小岛A的距离为( )
A. B. C. 20D.
【答案】D
【解析】
【分析】连接,此题易得,得,再利用勾股定理计算即可.
【详解】解:连接,
由已知得:,,,
∴,
在中,,
∴(),
故选:D
【点睛】此题考查的知识点是勾股定理的应用,直角三角形30度角的性质,关键是掌握勾股定理的计算.
7. 如图1是我国古建筑墙上采用的八角形空窗,其轮廓是一个正八边形,窗外之境如同镶嵌于一个画框之中.如图2是八角形空窗的示意图,它的一个外角( )
A. B. C. D.
【答案】A
【解析】
【分析】由正八边形的外角和为,结合正八边形的每一个外角都相等,再列式计算即可.
【详解】解:∵正八边形的外角和为,
∴,
故选A
【点睛】本题考查的是正多边形的外角问题,熟记多边形的外角和为是解本题的关键.
8. 某中学积极推进学生综合素质评价改革,该中学学生小明本学期德、智、体、美、劳五项的评价得分如图所示,则小明同学五项评价得分的众数、中位数、平均数分别为( )
A. 9,9,B. 9,9,C. 8,8,D. 9,8,
【答案】B
【解析】
【分析】利用众数、中位数及平均数的定义写出答案即可.
【详解】解:该同学五项评价得分从小到大排列分别为7,8,9,9,10,
出现次数最多的数是9,所以众数为9,
位于中间位置的数是9,所以中位数是9,
平均数为
故选:B.
【点睛】本题考查了统计的知识,掌握众数、中位数及平均数的计算方法是关键.
9. 如图,是的直径,,则( )
A. B. C. D.
【答案】B
【解析】
【分析】根据圆周角定理可进行求解.
【详解】解:∵是直径,
∴,
∵,
∴,
∵,
∴;
故选B.
【点睛】本题主要考查圆周角的相关性质,熟练掌握直径所对圆周角为直角是解题的关键.
10. 如图,抛物线经过正方形的三个顶点A,B,C,点B在轴上,则的值为( )
A. B. C. D.
【答案】B
【解析】
【分析】连接,交y轴于点D,根据正方形的性质可知,然后可得点,进而代入求解即可.
【详解】解:连接,交y轴于点D,如图所示:
当时,则,即,
∵四边形是正方形,
∴,,
∴点,
∴,
解得:,
故选B.
【点睛】本题主要考查二次函数的图象与性质及正方形的性质,熟练掌握二次函数的图象与性质及正方形的性质是解题的关键.
第Ⅱ卷
二、填空题(本大题共6个小题,每小题4分,共24分)
11.若代数式有意义,则实数x的取值范围是______.
【答案】
【解析】
【分析】根据分式有意义条件列不等式求解即可.
【详解】解:若代数式有意义,则,
解得:,
故答案为:.
【点睛】本题考查了分式有意义的条件,熟知分式有意义,分母不为零是解题的关键.
12. 分解因式:=__________________.
【答案】
【解析】
【详解】试题分析:原式提公因式得:y(x2-y2)=
考点:分解因式
点评:本题难度中等,主要考查学生对多项式提公因式分解因式等知识点掌握.需要运用平方差公式.
13. 小明从《红星照耀中国》,《红岩》,《长征》,《钢铁是怎样炼成的》四本书中随机挑选一本,其中拿到《红星照耀中国》这本书的概率为______.
【答案】##0.25
【解析】
【分析】根据概率公式进行计算即可.
【详解】解:随机挑选一本书共有4种等可能的结果,其中拿到《红星照耀中国》这本书的结果有1种,
∴,
故答案为:.
【点睛】本题考查概率.熟练掌握概率公式,是解题的关键.
14. 一个圆锥的底面半径为5,高为12,则它的体积为________.
【答案】
【解析】
【分析】根据圆锥的体积=×底面积×高,即可求解.
【详解】解:∵圆锥底面半径为5,高为12,
∴它的体积,
故答案为:.
【点睛】本题考查圆锥体积,关键是熟练掌握圆锥的体积=×底面积×高.
15. 边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为_______.
【答案】15
【解析】
【分析】根据正方形的性质及相似三角形的性质可进行求解.
【详解】解:如图,
由题意可知,,
∴,
∵,
∴,
∴,
∴,
∵,
∴,
∴,
∴,
∴,
∴;
故答案为15.
【点睛】本题主要考查正方形的性质及相似三角形的性质与判定,熟练掌握正方形的性质及相似三角形的性质与判定是解题的关键.
16. 如图,在中,将绕点A顺时针旋转至,将绕点A逆时针旋转至,得到,使,我们称是的“旋补三角形”,的中线叫做的“旋补中线”,点A叫做“旋补中心”.下列结论正确的有________.
①与面积相同;
②;
③若,连接和,则;
④若,,,则.
【答案】①②③
【解析】
【分析】延长,并截取,连接,证明,得出,,根据,,得出,证明,得出,即可判断①正确;根据三角形中位线性质得出,根据,得出,判断②正确;根据时,,
得出,,,,根据四边形内角和得出
,求出,判断③正确;根据②可知,,根据勾股定理得出,求出,判断④错误.
【详解】解:延长,并截取,连接,如图所示:
∵,
∴,
∵,
∴,
∴,
∴,
根据旋转可知,,,
∵,
∴,
∴,,
∵,,
∴,
∴,
∴,
即与面积相同,故①正确;
∵,,
∴是的中位线,
∴,
∵,
∴,故②正确;
当时,,
∴,,,,
∵,
∴,
即,故③正确;
∵,
∴根据②可知,,
∵当时,,为中线,
∴,
∴,
∴,
∴,故④错误;
综上分析可知,正确的是①②③.
【点睛】本题主要考查了三角形全等的判定和性质,等腰三角形的性质,中位线性质,勾股定理,四边形内角和,补角的性质,解题的关键是作出辅助线,构造全等三角形,证明.
三、解答题(本大题共9个小题,共86分.解答应写出文字说明,证明过程或演算步骤)
17.(8分)计算:.
【答案】
【解析】
【分析】代入特殊角三角函数值,利用负整数指数幂,绝对值和二次根式的性质化简,然后计算即可.
【详解】解:原式
.
【点睛】本题考查了实数的混合运算,牢记特殊角三角函数值,熟练掌握负整数指数幂,绝对值和二次根式的性质是解题的关键.
18.(8分) 先化简,再求值:,其中.
【答案】,
【解析】
【分析】先根据分式混合运算法则把原式进行化简,再把x的值代入进行计算即可.
【详解】
∵
∴原式.
【点睛】本题考查了分式的化简求值,熟知分式混合运算的法则是解答此题的关键.
19.(8分)如图,B是的中点,,.求证:.
【答案】见解析
【解析】
【分析】根据已知条件证得,,然后证明,应用全等三角形的性质得到.
【详解】证明:∵B是的中点,
∴,
∵,
∴,
在和中,
∴,
∴.
【点睛】此题考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.
20. (8分)对联是中华传统文化的瑰宝,对联装裱后,如图所示,上、下空白处分别称为天头和地头,左、右空白处统称为边.一般情况下,天头长与地头长的比是,左、右边的宽相等,均为天头长与地头长的和的.某人要装裱一副对联,对联的长为,宽为.若要求装裱后的长是装裱后的宽的4倍,求边的宽和天头长.(书法作品选自《启功法书》)
【答案】边的宽为,天头长为
【解析】
【分析】设天头长为,则地头长为,边的宽为,再分别表示础装裱后的长和宽,根据装裱后的长是装裱后的宽的4倍列方程求解即可.
【详解】解:设天头长为,
由题意天头长与地头长的比是,可知地头长为,
边的宽为,
装裱后的长为,
装裱后的宽为,
由题意可得:
解得,
∴,
答:边的宽为,天头长为.
【点睛】本题考查了一元一次方程的应用,题中的数量关系较为复杂,需要合理设未知数,找准数量关系.
21.(8分)小红家到学校有两条公共汽车线路,为了解两条线路的乘车所用时间,小红做了试验,第一周(5个工作日)选择A线路,第二周(5个工作日)选择B线路,每天在固定时间段内乘车2次并分别记录所用时间,数据统计如下:(单位:min)
数据统计表
数据折线统计图
根据以上信息解答下列问题:
(1)填空:__________;___________;___________;
(2)应用你所学的统计知识,帮助小红分析如何选择乘车线路.
【答案】(1)19,26.8,25
(2)见解析
【解析】
【分析】(1)根据中位数定义将A线路所用时间按从小到大的顺序排列,求中间两个数的平均数即为A线路所用时间的中位数a,利用平均数的定义求出B线路所用时间的平均数b,找出B线路所用时间中出现次数最多的数据即为B线路所用时间的众数c,从而得解;
(2)根据四个统计量分析,然后根据分析结果提出建议即可.
【小问1详解】
解:将A线路所用时间按从小到大顺序排列得:14,15,15,16,18,20,21,32,34,35,中间两个数是18,20,
∴A线路所用时间的中位数为:,
由题意可知B线路所用时间得平均数为: ,
∵B线路所用时间中,出现次数最多的数据是25,有两次,其他数据都是一次,
∴B线路所用时间的众数为:
故答案为:19,26.8,25;
【小问2详解】
根据统计量上来分析可知,A线路所用时间平均数小于B线路所用时间平均数线路,A线路所用时间中位数也小于B线路所用时间中位数,但A线路所用时间的方差比较大,说明A线路比较短,但容易出现拥堵情况,B线路比较长,但交通畅通,总体上来讲A路线优于B路线.
因此,我的建议是:根据上学到校剩余时间而定,如果上学到校剩余时间比较短,比如剩余时间是21分钟,则选择A路线,因为A路线的时间不大于21分钟的次数有7次,而B路线的时间都大于21分钟;如果剩余时间不短也不长,比如剩余时间是31分钟,则选择B路线,因为B路线的时间都不大于31分钟,而A路线的时间大于31分钟有3次,选择B路线可以确保不迟到;如果剩余时间足够长,比如剩余时间是36分钟,则选择A路线,在保证不迟到的情况,选择平均时间更少,中位数更小的路线.
【点睛】本题考查求平均数,中位数和众数,以及根据统计量做决策等知识,掌握统计量的求法是解题的关键.
22. (10分)如图,为的直径,E为上一点,点C为的中点,过点C作,交的延长线于点D,延长交的延长线于点F.
(1)求证:是的切线;
(2)若,,求的半径长.
【答案】(1)证明见解析
(2)
【解析】
【分析】(1)连接,根据弦、弧、圆周角的关系可证,根据圆的性质得,证明,得到,根据切线的判定定理证明;
(2)连接,,根据勾股定理得到长,根据等弧对等弦得到,根据圆内接四边形对角互补得,推出,证明,利用相似三角形的性质即可求解.
【小问1详解】
证明:连接,
∵点C为的中点,
∴,
∴,
∵,
∴
∴
∴,
∴,
∵为半径,
∴为切线;
【小问2详解】
解:连接,,
∵,
∴,
∵,,
∴,
∵D是的中点,
∴,
∴,
∵为的直径,
∴,
∵,,
∴,
∴,
∴,
∴,
∴,
∴的半径长为.
【点睛】本题考查了切线的判定和性质,勾股定理,相似三角形的判定和性质,正确地作出辅助线是解题的关键.
23. (10分)综合与实践
问题探究:(1)如图1是古希腊数学家欧几里得所著的《几何原本》第1卷命题9:“平分一个已知角.”即:作一个已知角的平分线,如图2是欧几里得在《几何原本》中给出的角平分线作图法:在和上分别取点C和D,使得,连接,以为边作等边三角形,则就是的平分线.
请写出平分的依据:____________;
类比迁移:
(2)小明根据以上信息研究发现:不一定必须是等边三角形,只需即可.他查阅资料:我国古代已经用角尺平分任意角.做法如下:如图3,在的边,上分别取,移动角尺,使角尺两边相同刻度分别与点M,N重合,则过角尺顶点C的射线是的平分线,请说明此做法的理由;
拓展实践:
(3)小明将研究应用于实践.如图4,校园的两条小路和,汇聚形成了一个岔路口A,现在学校要在两条小路之间安装一盏路灯E,使得路灯照亮两条小路(两条小路一样亮),并且路灯E到岔路口A的距离和休息椅D到岔路口A的距离相等.试问路灯应该安装在哪个位置?请用不带刻度的直尺和圆规在对应的示意图5中作出路灯E的位置.(保留作图痕迹,不写作法)
【答案】(1);(2)证明见解析;(3)作图见解析;
【解析】
【分析】(1)先证明,可得,从而可得答案;
(2)先证明,可得,可得是的角平分线;
(3)先作的角平分线,再在角平分线上截取即可.
【详解】解:(1)∵,,,
∴,
∴,
∴是的角平分线;
故答案为:
(2)∵,,,
∴,
∴,
∴是的角平分线;
(3)如图,点即为所求作的点;
.
【点睛】本题考查的是全等三角形的判定与性质,角平分线的定义与角平分线的性质,作已知角的角平分线,理解题意,熟练的作角的平分线是解本题的关键.
24. (13分)如图,在正方形中,E是边上一动点(不与点A,D重合).边关于对称的线段为,连接.
(1)若,求证:是等边三角形;
(2)延长,交射线于点G;
①能否为等腰三角形?如果能,求此时的度数;如果不能,请说明理由;
②若,求面积的最大值,并求此时的长.
【答案】(1)见解析 (2)①能为等腰三角形,;②
【解析】
【分析】(1)由轴对称的性质得到,根据正方形的性质得到,求得,根据轴对称的性质得到,根据等边三角形的判定定理即可得到结论;
(2)①根据轴对称的性质得到,根据正方形的性质得到,得到,推出点B不可能是等腰三角形的顶点,若点F是等腰三角形的顶点,则有,此时E与D重合,不合题意,于是得到只剩下了,连接交于H,根据全等三角形的性质得到,得到为等腰三角形,根据平行线的性质得到,求得,根据等腰三角形的性质得到,于是得到;
②由①知,,要求面积的最大值,即求面积的最大值,在中,底边是定值,即求高的最大值即可,如图2,过G作于P,连接,取的中点M,连接,作于N,设,则,根据直角三角形的性质得到,推出,当当G,M,N三点共线时,取等号,于是得到结论;如图3,设与交于Q,则四边形是矩形,根据矩形的性质得到,求得,于是得到结论.
【小问1详解】
证明:由轴对称的性质得到,
∵四边形正方形,
∴,
∵,
∴,
∵于对称的线段为,
∴,
∴,
∴是等边三角形;
【小问2详解】
①∵于对称线段为,
∴
∵四边形是正方形,
∴,
∴,
∵E是边上一动点,
∴,
∴点B不可能是等腰三角形的顶点,
若点F是等腰三角形的顶点,
则有,
此时E与D重合,不合题意,
∴只剩下了,连接交于H,
∵
∴
∴,
∴,
∴为等腰三角形,
∵,
∴,
∵,
∴
∴
∴
∴
∴,
∴
∵
∴
∴;
②由①知,
要求面积的最大值,即求面积的最大值,
在中,底边是定值,即求高的最大值即可,
如图2,过G作于P,连接,取的中点M,连接,作于N,
设,则,
∵,M是的中点,
∴,
∴,
当G,M,N三点共线时,取等号,
∴面积的最大值,
的面积
如图3,设与交于Q,
则四边形是矩形,
∴,
∴,
∴,
∵,
∴,
∴ .
【点睛】此题是四边形的综合题,考查了正方形的性质,全等三角形的判定和性质,旋转的性质,轴对称的性质,正确地作出辅助线是解题的关键.
25.(13分) 如图,二次函数的图象与轴交于A,两点,且自变量的部分取值与对应函数值如下表:
备用图
(1)求二次函数的表达式;
(2)若将线段向下平移,得到的线段与二次函数的图象交于,两点(在左边),为二次函数的图象上的一点,当点的横坐标为,点的横坐标为时,求的值;
(3)若将线段先向上平移3个单位长度,再向右平移1个单位长度,得到的线段与二次函数的图象只有一个交点,其中为常数,请直接写出的取值范围.
【答案】(1)
(2)
(3)且或
【解析】
【分析】(1)利用待定系数法求出二次函数的表达式即可;
(2)连接,,过点R作交的延长线于点M,分别表示出、的长,根据正切的定义即可得到的值;
(3)分和两种情况讨论求解即可.
【小问1详解】
解:由表格可知,二次函数的图象经过点,,,代入得到
,
解得,
∴二次函数的表达式为;
【小问2详解】
如图,连接,,过点R作交的延长线于点M,
∵点的横坐标为,
∴,
∵,
∴抛物线的对称轴为直线,
∵点P与点Q关于直线对称,
设点,
则,解得,
∴点P的坐标为,
当时,,
即,
则,
∴,
,
∴,
即的值为;
【小问3详解】
由表格可知点、,
将线段先向上平移3个单位长度,再向右平移1个单位长度,得到、,
由题意可得,二次函数,与线段只有一个交点,
当时,抛物线开口向上,顶点在下方,
当时,,
即,
解得,
∴,
当时,,即,
解得,
∴,
此时满足题意,
当时,抛物线开口向下,顶点在上时,,
解得,
此时满足题意,
将点代入得到,解得,
将点代入得到,解得,
∴,此时满足题意,
综上可知, 且或.
【点睛】此题考查了二次函数的图象和性质、待定系数法求二次函数解析式、锐角三角函数、不等式的应用等知识,数形结合和分类讨论是解题的关键.
试验序号
1
2
3
4
5
6
7
8
9
10
A线路所用时间
15
32
15
16
34
18
21
14
35
20
B线路所用时间
25
29
23
25
27
26
31
28
30
24
平均数
中位数
众数
方差
A线路所用时间
22
a
15
63.2
B线路所用时间
b
26.5
c
6.36
…
…
…
…
数学(安徽卷)-学易金卷:中考第二次模拟考试卷: 这是一份数学(安徽卷)-学易金卷:中考第二次模拟考试卷,文件包含数学安徽卷-学易金卷中考第二次模拟考试卷全解全析docx、数学安徽卷-学易金卷中考第二次模拟考试卷参考答案docx、数学安徽卷-学易金卷中考第二次模拟考试卷考试版docx、数学安徽卷-学易金卷中考第二次模拟考试卷答题卡docx等4份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。
数学(福建卷)-学易金卷:中考第二次模拟考试卷: 这是一份数学(福建卷)-学易金卷:中考第二次模拟考试卷,文件包含数学福建卷全解全析docx、数学福建卷参考答案docx、数学福建卷考试版A4docx、数学福建卷考试版A3docx等4份试卷配套教学资源,其中试卷共48页, 欢迎下载使用。
数学(河北卷)-学易金卷:中考第二次模拟考试卷: 这是一份数学(河北卷)-学易金卷:中考第二次模拟考试卷,文件包含数学河北卷全解全析docx、数学河北卷参考答案docx、数学河北卷考试版A4docx、数学河北卷考试版A3docx等4份试卷配套教学资源,其中试卷共53页, 欢迎下载使用。