![3.2图形的旋转(二)同步练习 北师大版数学六年级下册第1页](http://img-preview.51jiaoxi.com/1/3/15868811/0-1718601618848/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![3.2图形的旋转(二)同步练习 北师大版数学六年级下册第2页](http://img-preview.51jiaoxi.com/1/3/15868811/0-1718601618887/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![3.2图形的旋转(二)同步练习 北师大版数学六年级下册第3页](http://img-preview.51jiaoxi.com/1/3/15868811/0-1718601618907/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
小学数学三 图形的运动图形的旋转(二)随堂练习题
展开
这是一份小学数学三 图形的运动图形的旋转(二)随堂练习题,共13页。试卷主要包含了选择题,填空题,判断题,解答题等内容,欢迎下载使用。
一、选择题
1.如图,A是正三角形中心点,沿中心点A转动图形,至少转( )度,能与原三角形重合。
A.60°B.90°C.180°D.120°
2.从6:15到6:30,钟表的分针旋转了 ( )。
A.120°B.180°C.90°D.360°
3.画有图案的卡片 经过旋转后可以得到的是( )。
A.B.C.D.
4.将下图绕点O顺时针方向旋转90°后得到的图形是( )。
A.B.C.D.
5.如图,长方形ABCD绕点A顺时针旋转90°后得到的图形是( )。
A.B.
C.D.
6.将 按逆时针旋转90°后得到的图形是( )。
A.B.C. D.
7.下图所示图形绕点O顺时针旋转90度得到的图案是( )。
A.B.C.D.
8.如图:
在三角形ABC中∠ACB=90°,∠A=40°,以C为旋转中心,将三角形ABC旋转到三角形A′B′C的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边C′A′交AB于D,则旋转角等于( )度.
A.70B.80C.60
二、填空题
9.如图,在图1中,先将图A绕点( )按( )时针方向旋转( )°,再将图B绕点( )按( )时针方向旋转( )°得到图2。
10.将三角形绕点( ),( )时针旋转( )度,才能形成三角形。
11.
花儿绕点( )时针旋转了( )。
12.如图,指针从指向B( )时针旋转( ),就指向C;指针从指向B( )时针旋转( ),就指向A。
13.这个图形可以看做是由( )绕着点( )向( )方向旋转而成的。
14.如图中图形2先绕点O按( )方向旋转( )°,再向( )平移( )格,得到图形1。
三、判断题
15.把一个图形绕某点顺时针旋转90°后,得到的图形与原来的图形相比,大小不变。( )
16.通过平移、轴对称和旋转可以改变图形的位置,但不能改变图形的大小、形状。( )
17.如图,图形A绕O点逆时针旋转90°后,到达图形B的位置。( )
18.把一个图形绕某点顺时针旋转90度,所得图形与原来图形形状大小都变了。( )
19.下图中AB绕点A按逆时针方向旋转90°到AB2的位置。( )
四、解答题
20.根据要求画图。
(1)把圆移到圆心是(6,8)的位置。
(2)把长方形绕A点顺时针旋转90°。
(3)画出以直线MN成轴对称图形的另一半。
21.看图回答问题。
(1)图形B可以看作图形A如何运动得到的?
(2)图形D如何运动得到图形C?
22.(1)用圆规在中间的圆中画出和第一个图形完全一样的图形,并涂上颜色。
(2)第一个图形是如何变换得到第三个图形的?
23.操作。
(1)B点位置用数对表示是( ),A点位置用数对表示是( )。
(2)画出图形①绕A点顺时针旋转后的图形。
(3)画出图形②向下平移3格后的图形。
(4)画出图形③按2∶1的比(半径比)扩大后的图形。
(5)画出图形④以l为对称轴的轴对称图形。
24.(1)把图中的梯形,绕点A顺时针旋转90°,画出旋转后图形。点A的位置用数对表示是( , )。
(2)如果1个小方格表示1平方厘米,请你在方格纸上设计一个面积是12平方厘米的轴对称图形,并画出它的一条对称轴。
参考答案:
1.D
【分析】A是正三角形中心点,三角形的三个角都是60度,沿中心点A转动图形,要转动的是120度的倍数,就能与三角形重合。
【详解】A是正三角形中心点,沿中心点A转动图形,至少转120度,能与原三角形重合。
故答案为:D。
【点睛】本题考查旋转,解答本题的关键是掌握正三角形的特征。
2.C
【详解】略
3.C
【详解】【解答】画有图案的卡片 经过旋转后可以得到的是。
故答案为:C。
【分析】 根据旋转的特征,一个图形绕某点按一定的方向旋转一定的度数后,某点的位置不动,其余各部分均绕此点按相同方向旋转相同的度数,即可得到旋转后的图形;
旋转作图要注意:①旋转方向;②旋转角度,整个旋转作图,就是把整个图案的每一个特征点绕旋转中心按一定的旋转方向和一定的旋转角度旋转移动,据此解答。
4.C
【分析】顺时针方向旋转90°是指将图形绕O点向右旋转90°,据此画出旋转后的图形,再和各选项进行对比,即可解答。
【详解】将图形绕O顺时针方向旋转90°后得到的图形是。
故答案为:C
【点睛】解答本题的关键是掌握旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变。
5.B
【分析】把组成的图形的每条线段,按要求画出旋转后的位置,旋转后所有线段组成的图形即旋转后的图形。
【详解】长方形ABCD绕点A顺时针旋转90°后得到的图形是
故答案为:B
【点睛】本题考查了将图形旋转一定的角度,定点:确定旋转的中心;定向:根据要求,确定是按顺时针方向旋转,还是按逆时针方向旋转;定度数:确定所要旋转的度数。
6.B
【分析】将圆环外侧左端点定为旋转中心,再将原图绕着旋转中心逆时针旋转90度即可。
【详解】原图逆时针旋转90度得到图形。
故答案为:B。
【点睛】注意是逆时针旋转,旋转角度是90°。
7.C
【分析】绕图形上的点O顺时针旋转90°,先把这个点连接的边顺时针旋转90°,然后把剩下的边连接起来即可。
【详解】绕点O顺时针旋转90度得到的图案是。
故答案为:C
【点睛】本题考查了图形的旋转变化。决定旋转后图形的位置的要素:一是旋转中心或轴,二是旋转方向(顺时针或逆时针),三是旋转角度。
8.B
【分析】旋转后的图形的大小不变,各个角的度数也不变,这样∠B′就是50度,三角形BB′C是等腰三角形,所以能计算出∠B′CB的度数,然后就能确定旋转角的大小.
【详解】图中BC绕C点旋转后得到B′C,CB=CB′,又因为∠A′B′C是∠ABC旋转后的角,因此两角相等都是50度,经过计算得到∠B′CB=80° , 故∠ACD=80°.
故答案为B
9. O 逆 90 O′ 顺 90
【分析】根据旋转的特征,在图1中,先将图A绕点O逆时针方向旋转90°,再将图B绕点O′顺时针方向旋转90°即可得到图2。
【详解】
在图1中,先将图A绕点O按逆时针方向旋转90°,再将图B绕点O′按顺时针方向旋转90°得到图2。
【点睛】根据旋转的特征,图1绕点O顺时针旋转90°点O的位置不动,这个图形的各部分均绕此点按相同方向旋转相同的度数即可画出旋转后的图形。
10. C 顺 90
【分析】在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫作图形的旋转,这个定点叫做旋转中心,转动的角度叫做旋转角。图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。据此解答即可。
【详解】三角形绕点(C),(顺)时针旋转(90)度,才能形成三角形。
【点睛】解答此题的关键是:应明确旋转的意义,并能灵活运用其意义进行解决问题。
11. 逆 90
【分析】根据旋转的特征,花儿绕点0逆时针旋转90°后,点0的位置不动,其余各部分均绕此点按相同方向旋转相同的度数。据此判断。
【详解】花儿绕点(逆)时针旋转了(90)
【点睛】根据图意,明确花儿绕点旋转的方向和旋转角度是解答本题的关键。
12. 顺 90 逆 90
【分析】观察图形可知,ABCD四个点把这个360°的圆心角平均分成了四份,每份的角度是90°,确定好旋转的方向和角度即可解答。
【详解】指针从指向B(顺)时针旋转(90),就指向C;指针从指向B(逆)时针旋转(90),就指向A。
【点睛】此题考查了对图形旋转知识的灵活运用,要靠平时把知识积累牢,用活。
13. 三角形ABC(答案不唯一) O 顺时针(答案不唯一)
【分析】等腰三角形ABC绕形外点O顺时针方向旋转90°得到等腰三角形FCM、旋转180°得到等腰三角形GME、旋转270°得到等腰三角形DEB。总之,这个图形可以看做是由三角形ABC绕着点O向顺时针(或逆时针)方向旋转而成的。
【详解】这个图形可以看做是由(三角形ABC)绕着点(O)向(顺时针)方向旋转而成的。
【点睛】经过旋转,图形上的每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。
14. 逆时针 180 上 4
【分析】根据旋转的特征,图形2绕点O逆时针旋转180°,再根据平移的特征,向上平移4格,即得到图形1。
【详解】如下图所示;图形2先绕点O按逆时针方向旋转(图中蓝色部分),再向上平移4格,得到图形1。
【点睛】本题是考查作平移后的图形、作旋转后的图形,图形平移、旋转后大小、形状不变,只是方向的改变。
15.√
【分析】根据图形旋转的特征可知:图形旋转后,形状、大小都没有发生改变,只是位置发生的变化;据此解答。
【详解】把一个图形绕某点顺时针旋转90°后,得到的图形与原来的图形相比,大小不变。原题干说法正确。
故答案为:√
【点睛】本题考查旋转,明确旋转前后图形不变是解题的关键。
16.√
【详解】略
17.×
【分析】根据旋转图形的特点,对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前、后的图形完全相同;图A绕点O逆时针旋转90°后,点O不变,其它各边均绕O点旋转90°后,得的图形是图C,而不是图B。
【详解】如图:
图形A绕O点逆时针旋转90°后,到达图形C的位置,不是图形B的位置。
故答案为:×
【点睛】掌握图形的旋转方法是解答本题的关键。
18.×
【分析】根据图形旋转的特征可知:图形旋转后,形状、大小都没有发生改变,只是方向发生的变化,据此解答。
【详解】根据图形旋转的特征可知:把一个图形绕某点顺时针旋转90度,所得图形与原来图形形状大小都不变。所以原题说法错误。
故答案为:×
【点睛】此题考查了图形旋转的特征和性质,要知道:图形旋转后,形状和大小不变,只是方向发生了变化;图形绕某一点旋转一定的度数,图形中的对应点、对应线段都旋转相应的度数,对应点到旋转点的距离相等。
19.√
【分析】根据图形旋转的三要素:旋转的中心、方向、角度;由此进行解答。
【详解】图中AB绕点A按逆时针方向旋转90°到AB2的位置。
原题干说法正确。
故答案为:√
【点睛】理解图形旋转的三要素是解答本题的关键。
20.见详解
【分析】(1) 圆心确定圆的位置,半径确定圆的大小,由此先找到此圆的圆心点为(3,3),半径是2格长,再由数对与位置找到平移后的圆心点是(6, 8),以半径为2格长画圆即可得到平移后的位置;
(2)根据图形旋转的方法,将与点A连接的两条边顺时针旋转90*,再作这两条边的平行线即可得出旋转后的图形;
(3)根据轴对称图形的特征,对称点到对称轴的距离相等,找出三个对称点,然后连接即可。
【详解】(1) 由数对与位置找到平移后的圆心点是(6, 8),以半径为2格长画圆即可得到平移后的位置;
(2)根据图形旋转的方法,将与点A连接的两条边顺时针旋转90°,再作这两条边的平行线即可得出旋转后的图形;
(3)根据轴对称图形的特征,对称点到对称轴的距离相等,找出三个对称点,然后连接即可。
作图如下:
【点睛】此题考查了数对表示位置以及图形的平移、旋转的方法的灵活应用,根据轴对称图形的特征,作对称图形。
21.见详解
【分析】平移:在平面内,将一个图形上的所有点都按照某个方向作相同距离移动的图形运动。平移后图形的位置改变,形状、大小、方向不变。
旋转:在平面内,将一个图形绕一点按某个方向转动一定的角度,这样的运动叫做图形的旋转。这个定点叫做旋转中心,转动的角度叫做旋转角。旋转前后图形的位置和方向改变,形状、大小不变。
【详解】(1)答:图形B可以看作图形A先绕点Q顺时针旋转90°,再向下平移2格得到的。(答案不唯一)
(2)答:图形D可以先绕点I逆时针旋转90°,再向右平移2格得到图形C。(答案不唯一)
【点睛】此题考查了平移与旋转的意义及在实际当中的运用。
22.(1)
(2)将C以0为旋转中心逆时针旋转90°,在向左平移3个单位;将B以0为旋转中心逆时针旋转90°,在向右平移3个单位。
【详解】略
23.(1)(2,5);(5,3)
(2)~(5)见详解
【分析】(1)用数对表示位置时,通常把竖排叫列,横排叫行。表示列的数在前,表示行的数在后,中间用逗号“,”隔开,数对加上小括号。
(2)作旋转一定角度后的图形步骤:①根据题目要求,确定旋转中心、旋转方向和旋转角。②分析所作图形,找出构成图形的关键点。③找出关键点的对应点:按一定的方向和角度分别作出各关键点的对应点。④作出新图形,顺次连接作出的各点即可。
(3)作平移后的图形步骤:①找点-找出构成图形的关键点。②定方向、距离-确定平移方向和平移距离。③画线-过关键点沿平移方向画出平行线。④定点-由平移的距离确定关键点平移后的对应点的位置。⑤连点-连接对应点。
(4)把图形③按2∶1的比(半径比)扩大,图形③的半径是2,则扩大后的圆的半径是2×2=4,据此作图。
(5)补全轴对称图形的方法:找出图形的关键点,依据对称轴画出关键点的对称点,再依据图形的形状顺次连接各点,画出最终的轴对称图形。
【详解】(1)根据数对的特点,B点位置用数对表示是(2,5),A点位置用数对表示是(5,3)。
(2)~(5)作图如下:
【点睛】本题考查了用数对表示位置,作平移、旋转后的图形,补全轴对称图形,图形的放大。掌握各图形的作图步骤和方法是解题的关键。
24.(1)图见详解;(2,5)
(2)图见详解
【分析】(1)根据旋转的特征,图中的梯形绕点A顺时针旋转90°,点A的位置不动,其余各部分均绕此点按相同方向旋转相同的度数即可画出旋转后的图形。再根据用数对表示物体位置的方法,数对的第一个数是列,第二个数是行,表示出A点的位置即可;
(2)方法不唯一。可设计一个上、下底分别为2厘米,4厘米,高为4厘米的等腰梯形,其面积是(2+4)×4÷2=12(平方厘米),它的对称轴是过上、下底中点的直线,据此画图即可。
【详解】(1)把图中的梯形绕点A顺时针旋转90°,画出旋转后图形(图中红色部分)。点A的位置用数对表示是(2,5)。
(2)等腰梯形面积:
(2+4)×4÷2
=6×4÷2
=12(平方厘米)
在方格纸上设计一个面积是12平方厘米的轴对称图形(图中绿色部分,答案不唯一),并画出它的一条对称轴(图中蓝色虚线)。
【点睛】此题考查的知识点:作旋转一定度数后的图形、作轴对称图形、数对与位置等。
相关试卷
这是一份小学数学北师大版六年级下册图形的旋转(二)同步练习题,共13页。试卷主要包含了选择题,填空题,判断题,解答题等内容,欢迎下载使用。
这是一份北师大版六年级下册图形的旋转(二)达标测试,共14页。试卷主要包含了注意卷面整洁,图形A旋转度得到图形B,图形A向平移格,得到图形B,从6等内容,欢迎下载使用。
这是一份北师大版六年级下册图形的旋转(二)当堂达标检测题,共6页。试卷主要包含了选择题,填空题,判断题,解答题等内容,欢迎下载使用。
![数学口算宝](http://img.51jiaoxi.com/images/b5b1d1ecde54d50c4354a439d5c45ddc.png)