中考数学(扬州卷)-2024年中考数学第三次模考试
展开3、三模考试大概在中考前两周左右,三模是中考前的最后一次考前检验。三模学校会有意降低难度,目的是增强考生信心,难度只能是中上水平,主要也是对初中三年的知识做一个系统的检测,让学生知道中考的一个大致体系和结构。
2024年中考第三次模拟考试(扬州卷)
数 学
(考试时间:120分钟 试卷满分:150分)
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。
3.将答案写在答题卡上。写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的)
1.下列四个数,0,1,中,最小的数是( )
A.B.0C.1D.
2.下列运算正确的是( )
A.B.
C.D.
3.某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的实验最有可能的是( )
A.袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机取出一个球是黄球
B.掷一枚质地均匀的硬币,落地时结果是“正面向上”
C.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是2
D.从一副扑克牌中随机抽取一张,抽到的牌是梅花
4.我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是( )
A. B. C. D.
5.若点,,,都在反比例函数(k为常数)的图象上,则,,的大小关系为( )
A.B.
C.D.
6.如图,四边形是菱形,,于点,点,分别是,的中点,连接,,若,则的长为( )
A.B.C.2D.
第6题第8题
7.定义:在平面直角坐标系中,点的横、纵坐标的绝对值之和叫做点的勾股值,记.若抛物线与直线只有一个交点,已知点在第一象限,且,令,则的取值范围为( )
A.B.C.D.
8.如图,在中,是边上的点(不与点,重合).过点作交于点;过点作交于点.是线段上的点,;是线段上的点,.若已知的面积,则一定能求出( )
A.的面积B.的面积
C.的面积D.的面积
二、填空题(本大题共10小题,每小题3分,共30分.)
9.中国科学院发现“绿色”光刻胶,精度可达米,数字用科学记数法可表示为 .
10.若,,则的值为 .
11.《墨子·天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形的面积为2,以它的对角线的交点为位似中心,作它的位似图形,若,则四边形的外接圆的半径为 .
第11题第14题第15题
12.在学校优秀班集体评选中,七年级一班的“学习”、“卫生”、“纪律”、“德育”这四项成绩(百分制)依次为80、84、86、90.若按“学习”成绩占、“卫生”成绩占、“纪律”成绩占、“德育”成绩占进行考核打分(百分制),则该班得分为 .
13.若二次函数的图象与坐标轴有两个公共点,则b满足的条件是 .
14.如图,在平行四边形中,,点是中点,在上取一点,以点为圆心,的长为半径作圆,该圆与边恰好相切于点,连接,若图中阴影部分面积为,则 .
15.对某一个函数给出如下定义:若存在实数,对于任意的函数值,都满足,则称这个函数是有界函数,在所有满足条件的中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.将函数的图象向上平移个单位,得到的函数的边界值满足是时,则的取值范围是 .
16.如图,四边形是边长为6的菱形,,点E、F分别是、边上的动点(不与B、C、D重合),连接、、,若是等边三角形,则周长的最小值为 .(结果保留根号)
第16题第17题
17.在中,,将线段绕点A顺时针旋转得到线段,连接,则的最大值为 .
18.如图,正方形的边长为6cm,E为的中点,连接AE,过点D作于点F,连接,过点C作于点G,交AE于点M,交AD于点N,则MN的长为 .
三、解答题(本大题共10小题,共96分.解答时应写出文字说明、证明过程或演算步骤)
19.(8分)
(1)计算:;(2)解不等式组.
20.(8分)先化简,再求值:,其中是方程的根.
21.(8分)某校七年级和八年级开展了一次综合实践知识竞赛活动,按10分制进行评分,成绩(单位:分)均为不低于6的整数.为了解这次竞赛的情况,现从这两个年级各随机抽取20名学生竞赛成绩作为样本进行整理,并绘制不完整的统计图表,部分信息如下:
已知八年级20名学生成绩的中位数为分.
请根据以上信息,完成下列问题:
(1)所给的样本中,七年级竞赛成绩的众数为__________分,七年级竞赛成绩为9分的学生人数是__________人.
(2)___________,_________.
(3)若认定竞赛成绩不低于9分为“优秀”,根据样本数据,判断本次竞赛中优秀率高的年级是否平均成绩也高,并说明理由.
22.(8分)2024年春节有4部影片在春节档上映,分别是《热辣滚烫》,《飞驰人生2》,《熊出没·逆转时空》,《第二十条》.小亮和小丽两名同学分别从《热辣滚烫》,《飞驰人生2》,《第二十条》三部电影中随机选择一部观看,将《热辣滚烫》表示为A,《飞驰人生2》表示为B,《第二十条》表示为C.假设这两名同学选择观看哪部电影不受任何因素影响,且每一部电影被选到的可能性相等.记小亮同学的选择为x,小丽同学的选择为y.
(1)请用列表法或画树状图法中的一种方法,求所有可能出现的结果.
(2)求小亮和小丽两名同学恰好选择观看不是同一部电影的概率.
23.(10分)随着人们环保意识的提高和技术的飞速发展,新能源汽车已成为汽车市场的一股不可忽视的力量.为加快公共领域充电基础设施建设,某停车场计划购买甲、乙两种型号的充电桩.已知甲型充电桩比乙型充电桩的单价多万元,用万元购买甲型充电桩与用万元购买乙型充电桩的数量相等.
(1)甲、乙两种型号充电桩的单价各是多少?
(2)该停车场计划购买甲、乙两种型号的充电桩共个,且乙型充电桩的购买数量不超过甲型充电桩购买数量的倍,则如何购买所需总费用最少?
24.(10分)如图,在平行四边形中,、分别平分、,交分别于点、.已知平行四边形的周长为.
(1)求证:;
(2)过点作于点,若,求的面积.
25.(10分)如图,点C为上一点,连接并延长至点D,使得.过点D作的切线,点B为切点,连接.点A为上一点, ,连接,,,.
(1)证明:为的切线;
(2)判断四边形OACB的形状,并证明你的结论.
26.(10分)近几年,中学生近视的现象越来越严重,为响应国家的号召,某公司推出了如图所示的一款可调节的护眼台灯,固定支撑杆垂直于水平操作台,与是分别可绕点和点旋转的调节杆,,,始终在同一平面内.已知,调节杆,.现调节台灯至图示位置,测得,,求调节杆端点到操作直线的距离(结果精确到1 cm,参考数据:,,,,).
27.(12分)在一节数学探究课中,同学们遇到这样的几何问题:如图1,等腰直角三角形和共顶点A,且三点共线,,连接,点G为的中点,连接和,请思考与具有怎样的数量和位置关系?
【模型构建】小颖提出且并给出了自己思考,以G是中点入手,如图2,通过延长与相交于点F,证明,得到,随后通过得即,又,所以且.
(1)请结合小颖的证明思路利用结论填空:当时,___;____.
【类比探究】
(2)如图3,若将绕点A逆时针旋转α度(),请分析此时上述结论是否成立?如果成立,如果不成立,请说明理由.
【拓展延伸】
(3)若将E绕点A逆时针旋转β度(),当时,请直接写出旋转角β的度数为_______.
28.(12分)如图1,二次函数的图象与轴相交于、两点,其中点的坐标为,与轴交于点,对称轴为直线.
(1)求该二次函数的解析式;
(2)是该二次函数图象上位于第一象限上的一动点,连接交于点,连接,,.若和的面积分别为、,请求出的最大值及取得最大值时点的坐标;
(3)如图2,将抛物线沿射线平移个单位得新抛物线,为新抛物线上一点,作直线,当点到直线的距离是点到直线的距离的倍时,直接写出点的横坐标.
中考数学(辽宁卷)-2024年中考数学第三次模考试: 这是一份中考数学(辽宁卷)-2024年中考数学第三次模考试,文件包含数学辽宁卷全解全析docx、数学辽宁卷参考答案及评分标准docx、数学辽宁卷考试版A4docx、数学辽宁卷答题卡pdf、数学辽宁卷考试版A3docx等5份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。
中考数学(贵州卷)-2024年中考数学第三次模考试: 这是一份中考数学(贵州卷)-2024年中考数学第三次模考试,文件包含数学贵州卷全解全析docx、数学贵州卷参考答案及评分标准docx、数学贵州卷考试版A4docx、数学贵州卷答题卡pdf、数学贵州卷考试版A3docx等5份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。
中考数学(苏州卷)-2024年中考数学第三次模考试: 这是一份中考数学(苏州卷)-2024年中考数学第三次模考试,文件包含数学苏州卷全解全析docx、数学苏州卷参考答案及评分标准docx、数学苏州卷考试版A4docx、数学苏州卷答题卡pdf、数学苏州卷考试版A3docx等5份试卷配套教学资源,其中试卷共62页, 欢迎下载使用。