2025届高考一轮复习三年真题汇编专题10数列
展开
这是一份2025届高考一轮复习三年真题汇编专题10数列,文件包含2025届高考一轮复习三年真题汇编专题10数列参考答案doc、2025届高考一轮复习三年真题汇编专题10数列docx等2份试卷配套教学资源,其中试卷共66页, 欢迎下载使用。
【详解】方法一:利用等差数列的基本量
由,根据等差数列的求和公式,,
又.
故选:D
方法二:利用等差数列的性质
根据等差数列的性质,,由,根据等差数列的求和公式,
,故.
故选:D
方法三:特殊值法
不妨取等差数列公差,则,则.
故选:D
2.B
【分析】由结合等差中项的性质可得,即可计算出公差,即可得的值.
【详解】由,则,
则等差数列的公差,故.
故选:B.
3.C
【分析】根据题意列出关于的方程,计算出,即可求出.
【详解】由题知,
即,即,即.
由题知,所以.
所以.
故选:C.
4.C
【分析】方法一:根据题意直接求出等差数列的公差和首项,再根据前项和公式即可解出;
方法二:根据等差数列的性质求出等差数列的公差,再根据前项和公式的性质即可解出.
【详解】方法一:设等差数列的公差为,首项为,依题意可得,
,即,
又,解得:,
所以.
故选:C.
方法二:,,所以,,
从而,于是,
所以.
故选:C.
5.C
【分析】设等差数列的公差为,则,利用等差数列的通项公式结合充分条件、必要条件的定义判断可得出结论.
【详解】设等差数列的公差为,则,记为不超过的最大整数.
若为单调递增数列,则,
若,则当时,;若,则,
由可得,取,则当时,,
所以,“是递增数列”“存在正整数,当时,”;
若存在正整数,当时,,取且,,
假设,令可得,且,
当时,,与题设矛盾,假设不成立,则,即数列是递增数列.
所以,“是递增数列”“存在正整数,当时,”.
所以,“是递增数列”是“存在正整数,当时,”的充分必要条件.
故选:C.
6.D
【分析】设等比数列的公比为,易得,根据题意求出首项与公比,再根据等比数列的通项即可得解.
【详解】解:设等比数列的公比为,
若,则,与题意矛盾,
所以,
则,解得,
所以.
故选:D.
7.C
【分析】方法一:根据等比数列的前n项和公式求出公比,再根据的关系即可解出;
方法二:根据等比数列的前n项和的性质求解.
【详解】方法一:设等比数列的公比为,首项为,
若,则,与题意不符,所以;
若,则,与题意不符,所以;
由,可得,,①,
由①可得,,解得:,
所以.
故选:C.
方法二:设等比数列的公比为,
因为,,所以,否则,
从而,成等比数列,
所以有,,解得:或,
当时,,即为,
易知,,即;
当时,,
与矛盾,舍去.
故选:C.
【点睛】本题主要考查等比数列的前n项和公式的应用,以及整体思想的应用,解题关键是把握的关系,从而减少相关量的求解,简化运算.
8.C
【分析】利用充分条件、必要条件的定义及等差数列的定义,再结合数列前n项和与第n项的关系推理判断作答.,
【详解】方法1,甲:为等差数列,设其首项为,公差为,
则,
因此为等差数列,则甲是乙的充分条件;
反之,乙:为等差数列,即为常数,设为,
即,则,有,
两式相减得:,即,对也成立,
因此为等差数列,则甲是乙的必要条件,
所以甲是乙的充要条件,C正确.
方法2,甲:为等差数列,设数列的首项,公差为,即,
则,因此为等差数列,即甲是乙的充分条件;
反之,乙:为等差数列,即,
即,,
当时,上两式相减得:,当时,上式成立,
于是,又为常数,
因此为等差数列,则甲是乙的必要条件,
所以甲是乙的充要条件.
故选:C
9.C
【分析】
由题意确定该数列为等比数列,即可求得的值.
【详解】
当时,,所以,即,
当时,,
所以数列是首项为2,公比为3的等比数列,
则.
故选:C.
10.B
【分析】根据给定的等差数列,写出通项公式,再结合余弦型函数的周期及集合只有两个元素分析、推理作答.
【详解】依题意,等差数列中,,
显然函数的周期为3,而,即最多3个不同取值,又,
则在中,或,
于是有,即有,解得,
所以,.
故选:B
11.C
【分析】结合等差数列性质将代换,求出直线恒过的定点,采用数形结合法即可求解.
【详解】因为成等差数列,所以,,代入直线方程得
,即,令得,
故直线恒过,设,圆化为标准方程得:,
设圆心为,画出直线与圆的图形,由图可知,当时,最小,
,此时.
故选:C
12.B
【分析】先通过递推关系式确定除去,其他项都在范围内,再利用递推公式变形得到,累加可求出,得出,再利用,累加可求出,再次放缩可得出.
【详解】∵,易得,依次类推可得
由题意,,即,
∴,
即,,,…,,
累加可得,即,
∴,即,,
又,
∴,,,…,,
累加可得,
∴,
即,∴,即;
综上:.
故选:B.
【点睛】关键点点睛:解决本题的关键是利用递推关系进行合理变形放缩.
13.D
【分析】设,则可得关于的方程,求出其解后可得正确的选项.
【详解】设,则,
依题意,有,且,
所以,故,
故选:D
14.B
【分析】法1:利用数列归纳法可判断ACD正误,利用递推可判断数列的性质,故可判断B的正误.
法2:构造,利用导数求得的正负情况,再利用数学归纳法判断得各选项所在区间,从而判断的单调性;对于A,构造,判断得,进而取推得不恒成立;对于B,证明所在区间同时证得后续结论;对于C,记,取推得不恒成立;对于D,构造,判断得,进而取推得不恒成立.
【详解】法1:因为,故,
对于A ,若,可用数学归纳法证明:即,
证明:当时,,此时不等关系成立;
设当时,成立,
则,故成立,
由数学归纳法可得成立.
而,
,,故,故,
故为减数列,注意
故,结合,
所以,故,故,
若存在常数,使得恒成立,则,
故,故,故恒成立仅对部分成立,
故A不成立.
对于B,若可用数学归纳法证明:即,
证明:当时,,此时不等关系成立;
设当时,成立,
则,故成立即
由数学归纳法可得成立.
而,
,,故,故,故为增数列,
若,则恒成立,故B正确.
对于C,当时, 可用数学归纳法证明:即,
证明:当时,,此时不等关系成立;
设当时,成立,
则,故成立即
由数学归纳法可得成立.
而,故,故为减数列,
又,结合可得:,所以,
若,若存在常数,使得恒成立,
则恒成立,故,的个数有限,矛盾,故C错误.
对于D,当时, 可用数学归纳法证明:即,
证明:当时,,此时不等关系成立;
设当时,成立,
则,故成立
由数学归纳法可得成立.
而,故,故为增数列,
又,结合可得:,所以,
若存在常数,使得恒成立,则,
故,故,这与n的个数有限矛盾,故D错误.
故选:B.
法2:因为,
令,则,
令,得或;
令,得;
所以在和上单调递增,在上单调递减,
令,则,即,解得或或,
注意到,,
所以结合的单调性可知在和上,在和上,
对于A,因为,则,
当时,,,则,
假设当时,,
当时,,则,
综上:,即,
因为在上,所以,则为递减数列,
因为,
令,则,
因为开口向上,对称轴为,
所以在上单调递减,故,
所以在上单调递增,故,
故,即,
假设存在常数,使得恒成立,
取,其中,且,
因为,所以,
上式相加得,,
则,与恒成立矛盾,故A错误;
对于B,因为,
当时,,,
假设当时,,
当时,因为,所以,则,
所以,
又当时,,即,
假设当时,,
当时,因为,所以,则,
所以,
综上:,
因为在上,所以,所以为递增数列,
此时,取,满足题意,故B正确;
对于C,因为,则,
注意到当时,,,
猜想当时,,
当与时,与满足,
假设当时,,
当时,所以,
综上:,
易知,则,故,
所以,
因为在上,所以,则为递减数列,
假设存在常数,使得恒成立,
记,取,其中,
则,
故,所以,即,
所以,故不恒成立,故C错误;
对于D,因为,
当时,,则,
假设当时,,
当时,,则,
综上:,
因为在上,所以,所以为递增数列,
因为,
令,则,
因为开口向上,对称轴为,
所以在上单调递增,故,
所以,
故,即,
假设存在常数,使得恒成立,
取,其中,且,
因为,所以,
上式相加得,,
则,与恒成立矛盾,故D错误.
故选:B.
【点睛】关键点睛:本题解决的关键是根据首项给出与通项性质相关的相应的命题,再根据所得命题结合放缩法得到通项所满足的不等式关系,从而可判断数列的上界或下界是否成立.
15.D
【分析】根据,再利用数列与的关系判断中各项的大小,即可求解.
【详解】[方法一]:常规解法
因为,
所以,,得到,
同理,可得,
又因为,
故,;
以此类推,可得,,故A错误;
,故B错误;
,得,故C错误;
,得,故D正确.
[方法二]:特值法
不妨设则
故D正确.
16.95
【分析】利用等差数列通项公式得到方程组,解出,再利用等差数列的求和公式节即可得到答案.
【详解】因为数列为等差数列,则由题意得,解得,
则.
故答案为:.
17.2
【分析】转化条件为,即可得解.
【详解】由可得,化简得,
即,解得.
故答案为:2.
18.
【分析】先分析,再由等比数列的前项和公式和平方差公式化简即可求出公比.
【详解】若,
则由得,则,不合题意.
所以.
当时,因为,
所以,
即,即,即,
解得.
故答案为:
19.
【分析】根据等比数列公式对化简得,联立求出,最后得.
【详解】设的公比为,则,显然,
则,即,则,因为,则,
则,则,则,
故答案为:.
20. 48 384
【分析】方法一:根据题意结合等差、等比数列的通项公式列式求解,进而可求得结果;方法二:根据等比中项求,在结合等差、等比数列的求和公式运算求解.
【详解】方法一:设前3项的公差为,后7项公比为,
则,且,可得,
则,即,可得,
空1:可得,
空2:
方法二:空1:因为为等比数列,则,
且,所以;
又因为,则;
空2:设后7项公比为,则,解得,
可得,所以.
故答案为:48;384.
21.①③④
【分析】利用两类数列的散点图的特征可判断①④的正误,利用反例可判断②的正误,结合通项公式的特征及反证法可判断③的正误.
【详解】对于①,因为均为等差数列,故它们的散点图分布在直线上,
而两条直线至多有一个公共点,故中至多一个元素,故①正确.
对于②,取则均为等比数列,
但当为偶数时,有,此时中有无穷多个元素,
故②错误.
对于③,设,,
若中至少四个元素,则关于的方程至少有4个不同的正数解,
若,则由和的散点图可得关于的方程至多有两个不同的解,矛盾;
若,考虑关于的方程奇数解的个数和偶数解的个数,
当有偶数解,此方程即为,
方程至多有两个偶数解,且有两个偶数解时,
否则,因单调性相反,
方程至多一个偶数解,
当有奇数解,此方程即为,
方程至多有两个奇数解,且有两个奇数解时即
否则,因单调性相反,
方程至多一个奇数解,
因为,不可能同时成立,
故不可能有4个不同的正数解,故③正确.
对于④,因为为单调递增,为递减数列,前者散点图呈上升趋势,
后者的散点图呈下降趋势,两者至多一个交点,故④正确.
故答案为:①③④
【点睛】思路点睛:对于等差数列和等比数列的性质的讨论,可以利用两者散点图的特征来分析,注意讨论两者性质关系时,等比数列的公比可能为负,此时要注意合理转化.
22.①③④
【分析】推导出,求出、的值,可判断①;利用反证法可判断②④;利用数列单调性的定义可判断③.
【详解】由题意可知,,,
当时,,可得;
当时,由可得,两式作差可得,
所以,,则,整理可得,
因为,解得,①对;
假设数列为等比数列,设其公比为,则,即,
所以,,可得,解得,不合乎题意,
故数列不是等比数列,②错;
当时,,可得,所以,数列为递减数列,③对;
假设对任意的,,则,
所以,,与假设矛盾,假设不成立,④对.
故答案为:①③④.
【点睛】关键点点睛:本题在推断②④的正误时,利用正面推理较为复杂时,可采用反证法来进行推导.
23.(1)证明见解析;
(2).
【分析】(1)依题意可得,根据,作差即可得到,从而得证;
(2)法一:由(1)及等比中项的性质求出,即可得到的通项公式与前项和,再根据二次函数的性质计算可得.
【详解】(1)因为,即①,
当时,②,
①②得,,
即,
即,所以,且,
所以是以为公差的等差数列.
(2)[方法一]:二次函数的性质
由(1)可得,,,
又,,成等比数列,所以,
即,解得,
所以,所以,
所以,当或时,.
[方法二]:【最优解】邻项变号法
由(1)可得,,,
又,,成等比数列,所以,
即,解得,
所以,即有.
则当或时,.
【整体点评】(2)法一:根据二次函数的性质求出的最小值,适用于可以求出的表达式;
法二:根据邻项变号法求最值,计算量小,是该题的最优解.
24.(1)证明见解析;
(2).
【分析】(1)设数列的公差为,根据题意列出方程组即可证出;
(2)根据题意化简可得,即可解出.
【详解】(1)设数列的公差为,所以,,即可解得,,所以原命题得证.
(2)由(1)知,,所以,即,亦即,解得,所以满足等式的解,故集合中的元素个数为.
25.(1)
(2)
【分析】(1)根据即可求出;
(2)根据错位相减法即可解出.
【详解】(1)因为,
当时,,即;
当时,,即,
当时,,所以,
化简得:,当时,,即,
当时都满足上式,所以.
(2)因为,所以,
,
两式相减得,
,
,即,.
26.(1)
(2)
【分析】(1)利用退位法可求公比,再求出首项后可求通项;
(2)利用等比数列的求和公式可求.
【详解】(1)因为,故,
所以即故等比数列的公比为,
故,故,故.
(2)由等比数列求和公式得.
27.(1)
(2)
【分析】(1)利用退位法可求的通项公式.
(2)利用错位相减法可求.
【详解】(1)当时,,解得.
当时,,所以即,
而,故,故,
∴数列是以4为首项,为公比的等比数列,
所以.
(2),
所以
故
所以
,
.
28.(1)
(2)见解析
【分析】(1)利用等差数列的通项公式求得,得到,利用和与项的关系得到当时,,进而得:,利用累乘法求得,检验对于也成立,得到的通项公式;
(2)由(1)的结论,利用裂项求和法得到,进而证得.
【详解】(1)∵,∴,∴,
又∵是公差为的等差数列,
∴,∴,
∴当时,,
∴,
整理得:,
即,
∴
,
显然对于也成立,
∴的通项公式;
(2)
∴
29.(1)
(2)
【分析】(1)利用等差数列通项公式及前项和公式化简条件,求出,再求;
(2)由等比数列定义列方程,结合一元二次方程有解的条件求的范围.
【详解】(1)因为,
所以,
所以,又,
所以,
所以,
所以,
(2)因为,,成等比数列,
所以,
,
,
由已知方程的判别式大于等于0,
所以,
所以对于任意的恒成立,
所以对于任意的恒成立,
当时,,
当时,由,可得
当时,,
又
所以
30.(1);
(2)证明见解析.
【分析】(1)设等差数列的公差为,用表示及,即可求解作答.
(2)方法1,利用(1)的结论求出,,再分奇偶结合分组求和法求出,并与作差比较作答;方法2,利用(1)的结论求出,,再分奇偶借助等差数列前n项和公式求出,并与作差比较作答.
【详解】(1)设等差数列的公差为,而,
则,
于是,解得,,
所以数列的通项公式是.
(2)方法1:由(1)知,,,
当为偶数时,,
,
当时,,因此,
当为奇数时,,
当时,,因此,
所以当时,.
方法2:由(1)知,,,
当为偶数时,,
当时,,因此,
当为奇数时,若,则
,显然满足上式,因此当为奇数时,,
当时,,因此,
所以当时,.
31.(1)
(2)
【分析】(1)根据等差数列的通项公式建立方程求解即可;
(2)由为等差数列得出或,再由等差数列的性质可得,分类讨论即可得解.
【详解】(1),,解得,
,
又,
,
即,解得或(舍去),
.
(2)为等差数列,
,即,
,即,解得或,
,,
又,由等差数列性质知,,即,
,即,解得或(舍去)
当时,,解得,与矛盾,无解;
当时,,解得.
综上,.
32.(1)
(2)
【分析】(1)根据题意列式求解,进而可得结果;
(2)先求,讨论的符号去绝对值,结合运算求解.
【详解】(1)设等差数列的公差为,
由题意可得,即,解得,
所以,
(2)因为,
令,解得,且,
当时,则,可得;
当时,则,可得
;
综上所述:.
33.(1)
(2)①证明见详解;②
【分析】(1)设等比数列的公比为,根据题意结合等比数列通项公式求,再结合等比数列求和公式分析求解;
(2)①根据题意分析可知,,利用作差法分析证明;②根据题意结合等差数列求和公式可得,再结合裂项相消法分析求解.
【详解】(1)设等比数列的公比为,
因为,即,
可得,整理得,解得或(舍去),
所以.
(2)(i)由(1)可知,且,
当时,则,即
可知,
,
可得,
当且仅当时,等号成立,
所以;
(ii)由(1)可知:,
若,则;
若,则,
当时,,可知为等差数列,
可得,
所以,
且,符合上式,综上所述:.
【点睛】关键点点睛:1.分析可知当时,,可知为等差数列;
2.根据等差数列求和分析可得.
34.(1)
(2)证明见解析
(3)
【分析】(1)利用等差等比数列的通项公式进行基本量运算即可得解;
(2)由等比数列的性质及通项与前n项和的关系结合分析法即可得证;
(3)先求得,进而由并项求和可得,再结合错位相减法可得解.
【详解】(1)设公差为d,公比为,则,
由可得(舍去),
所以;
(2)证明:因为所以要证,
即证,即证,
即证,
而显然成立,所以;
(3)因为
,
所以
,
设
所以,
则,
作差得
,
所以,
所以.
35.(1),;
(2)(Ⅰ)证明见解析;(Ⅱ),前项和为.
【分析】(1)由题意得到关于首项、公差的方程,解方程可得,据此可求得数列的通项公式,然后确定所给的求和公式里面的首项和项数,结合等差数列前项和公式计算可得.
(2)(Ⅰ)利用题中的结论分别考查不等式两侧的情况,当时,,
取,当时,,取,即可证得题中的不等式;
(Ⅱ)结合(Ⅰ)中的结论,利用极限思想确定数列的公比,进而可得数列的通项公式,最后由等比数列前项和公式即可计算其前项和.
【详解】(1)由题意可得,解得,
则数列的通项公式为,
求和得
.
(2)(Ⅰ)由题意可知,当时,,
取,则,即,
当时,,
取,此时,
据此可得,
综上可得:.
(Ⅱ)由(Ⅰ)可知:,
则数列的公比满足,
当时,,所以,
所以,即,
当时,,所以,
所以数列的通项公式为,
其前项和为:.
【点睛】本题的核心在考查数列中基本量的计算和数列中的递推关系式,求解数列通项公式和前项和的核心是确定数列的基本量,第二问涉及到递推关系式的灵活应用,先猜后证是数学中常用的方法之一,它对学生探索新知识很有裨益.
36.(1),
(2)证明见解析
(3)证明见解析
【分析】(1)直接根据题目中的构造方式计算出的坐标即可;
(2)根据等比数列的定义即可验证结论;
(3)思路一:使用平面向量数量积和等比数列工具,证明的取值为与无关的定值即可.思路二:使用等差数列工具,证明的取值为与无关的定值即可.
【详解】(1)
由已知有,故的方程为.
当时,过且斜率为的直线为,与联立得到.
解得或,所以该直线与的不同于的交点为,该点显然在的左支上.
故,从而,.
(2)由于过且斜率为的直线为,与联立,得到方程.
展开即得,由于已经是直线和的公共点,故方程必有一根.
从而根据韦达定理,另一根,相应的.
所以该直线与的不同于的交点为,而注意到的横坐标亦可通过韦达定理表示为,故一定在的左支上.
所以.
这就得到,.
所以
.
再由,就知道,所以数列是公比为的等比数列.
(3)方法一:先证明一个结论:对平面上三个点,若,,则.(若在同一条直线上,约定)
证明:
.
证毕,回到原题.
由于上一小问已经得到,,
故.
再由,就知道,所以数列是公比为的等比数列.
所以对任意的正整数,都有
.
而又有,,
故利用前面已经证明的结论即得
.
这就表明的取值是与无关的定值,所以.
方法二:由于上一小问已经得到,,
故.
再由,就知道,所以数列是公比为的等比数列.
所以对任意的正整数,都有
.
这就得到,
以及.
两式相减,即得.
移项得到.
故.
而,.
所以和平行,这就得到,即.
【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.
37.(1)
(2)证明见解析
(3)证明见解析
【分析】(1)直接根据可分数列的定义即可;
(2)根据可分数列的定义即可验证结论;
(3)证明使得原数列是可分数列的至少有个,再使用概率的定义.
【详解】(1)首先,我们设数列的公差为,则.
由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,
故我们可以对该数列进行适当的变形,
得到新数列,然后对进行相应的讨论即可.
换言之,我们可以不妨设,此后的讨论均建立在该假设下进行.
回到原题,第1小问相当于从中取出两个数和,使得剩下四个数是等差数列.
那么剩下四个数只可能是,或,或.
所以所有可能的就是.
(2)由于从数列中取出和后,剩余的个数可以分为以下两个部分,共组,使得每组成等差数列:
①,共组;
②,共组.
(如果,则忽略②)
故数列是可分数列.
(3)定义集合,.
下面证明,对,如果下面两个命题同时成立,
则数列一定是可分数列:
命题1:或;
命题2:.
我们分两种情况证明这个结论.
第一种情况:如果,且.
此时设,,.
则由可知,即,故.
此时,由于从数列中取出和后,
剩余的个数可以分为以下三个部分,共组,使得每组成等差数列:
①,共组;
②,共组;
③,共组.
(如果某一部分的组数为,则忽略之)
故此时数列是可分数列.
第二种情况:如果,且.
此时设,,.
则由可知,即,故.
由于,故,从而,这就意味着.
此时,由于从数列中取出和后,剩余的个数可以分为以下四个部分,共组,使得每组成等差数列:
①,共组;
②,,共组;
③全体,其中,共组;
④,共组.
(如果某一部分的组数为,则忽略之)
这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含个行,个列的数表以后,个列分别是下面这些数:
,,,.
可以看出每列都是连续的若干个整数,它们再取并以后,将取遍中除开五个集合,,,,中的十个元素以外的所有数.
而这十个数中,除开已经去掉的和以外,剩余的八个数恰好就是②中出现的八个数.
这就说明我们给出的分组方式满足要求,故此时数列是可分数列.
至此,我们证明了:对,如果前述命题1和命题2同时成立,则数列一定是可分数列.
然后我们来考虑这样的的个数.
首先,由于,和各有个元素,故满足命题1的总共有个;
而如果,假设,则可设,,代入得.
但这导致,矛盾,所以.
设,,,则,即.
所以可能的恰好就是,对应的分别是,总共个.
所以这个满足命题1的中,不满足命题2的恰好有个.
这就得到同时满足命题1和命题2的的个数为.
当我们从中一次任取两个数和时,总的选取方式的个数等于.
而根据之前的结论,使得数列是可分数列的至少有个.
所以数列是可分数列的概率一定满足
.
这就证明了结论.
【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.
38.(1)是连续可表数列;不是连续可表数列.
(2)证明见解析.
(3)证明见解析.
【分析】(1)直接利用定义验证即可;
(2)先考虑不符合,再列举一个合题即可;
(3)时,根据和的个数易得显然不行,再讨论时,由可知里面必然有负数,再确定负数只能是,然后分类讨论验证不行即可.
【详解】(1),,,,,所以是连续可表数列;易知,不存在使得,所以不是连续可表数列.
(2)若,设为,则至多,6个数字,没有个,矛盾;
当时,数列,满足,,,,,,,, .
(3),若最多有种,若,最多有种,所以最多有种,
若,则至多可表个数,矛盾,
从而若,则,至多可表个数,
而,所以其中有负的,从而可表1~20及那个负数(恰 21个),这表明中仅一个负的,没有0,且这个负的在中绝对值最小,同时中没有两数相同,设那个负数为 ,
则所有数之和,,
,再考虑排序,排序中不能有和相同,否则不足个,
(仅一种方式),
与2相邻,
若不在两端,则形式,
若,则(有2种结果相同,方式矛盾),
, 同理 ,故在一端,不妨为形式,
若,则 (有2种结果相同,矛盾),同理不行,
,则 (有2种结果相同,矛盾),从而,
由于,由表法唯一知3,4不相邻,、
故只能,①或,②
这2种情形,
对①:,矛盾,
对②:,也矛盾,综上,
当时,数列满足题意,
.
【点睛】关键点睛,先理解题意,是否为可表数列核心就是是否存在连续的几项(可以是一项)之和能表示从到中间的任意一个值.本题第二问时,通过和值可能个数否定;第三问先通过和值的可能个数否定,再验证时,数列中的几项如果符合必然是的一个排序,可验证这组数不合题.
39.(1),,,
(2)
(3)证明见详解
【分析】(1)先求,根据题意分析求解;
(2)根据题意题意分析可得,利用反证可得,在结合等差数列运算求解;
(3)讨论的大小,根据题意结合反证法分析证明.
【详解】(1)由题意可知:,
当时,则,故;
当时,则,故;
当时,则故;
当时,则,故;
综上所述:,,,.
(2)由题意可知:,且,
因为,且,则对任意恒成立,
所以,
又因为,则,即,
可得,
反证:假设满足的最小正整数为,
当时,则;当时,则,
则,
又因为,则,
假设不成立,故,
即数列是以首项为1,公差为1的等差数列,所以.
(3)因为均为正整数,则均为递增数列,
(ⅰ)若,则可取,满足 使得;
(ⅱ)若,则,
构建,由题意可得:,且为整数,
反证,假设存在正整数,使得,
则,可得,
这与相矛盾,故对任意,均有.
①若存在正整数,使得,即,
可取,
满足,使得;
②若不存在正整数,使得,
因为,且,
所以必存在,使得,
即,可得,
可取,
满足,使得;
(ⅲ)若,
定义,则,
构建,由题意可得:,且为整数,
反证,假设存在正整数,使得,
则,可得,
这与相矛盾,故对任意,均有.
①若存在正整数,使得,即,
可取,
即满足,使得;
②若不存在正整数,使得,
因为,且,
所以必存在,使得,
即,可得,
可取,
满足,使得.
综上所述:存在使得.
40.(1)
(2)不存在符合条件的,理由见解析
(3)证明见解析
【分析】(1)直接按照的定义写出即可;
(2)利用反证法,假设存在符合条件的,由此列出方程组,进一步说明方程组无解即可;
(3)分充分性和必要性两方面论证.
【详解】(1)由题意得;
(2)假设存在符合条件的,可知的第项之和为,第项之和为,
则,而该方程组无解,故假设不成立,
故不存在符合条件的;
(3)我们设序列为,特别规定.
必要性:
若存在序列,使得为常数列.
则,所以.
根据的定义,显然有,这里,.
所以不断使用该式就得到,,必要性得证.
充分性:
若.
由已知,为偶数,而,所以也是偶数.
我们设是通过合法的序列的变换能得到的所有可能的数列中,使得最小的一个.
上面已经证明,这里,.
从而由可得.
同时,由于总是偶数,所以和的奇偶性保持不变,从而和都是偶数.
下面证明不存在使得.
假设存在,根据对称性,不妨设,,即.
情况1:若,则由和都是偶数,知.
对该数列连续作四次变换后,新的相比原来的减少,这与的最小性矛盾;
情况2:若,不妨设.
情况2-1:如果,则对该数列连续作两次变换后,新的相比原来的至少减少,这与的最小性矛盾;
情况2-2:如果,则对该数列连续作两次变换后,新的相比原来的至少减少,这与的最小性矛盾.
这就说明无论如何都会导致矛盾,所以对任意的都有.
假设存在使得,则是奇数,所以都是奇数,设为.
则此时对任意,由可知必有.
而和都是偶数,故集合中的四个元素之和为偶数,对该数列进行一次变换,则该数列成为常数列,新的等于零,比原来的更小,这与的最小性矛盾.
综上,只可能,而,故是常数列,充分性得证.
【点睛】关键点点睛:本题第三问的关键在于对新定义的理解,以及对其本质的分析.
相关试卷
这是一份专题12 数列-【真题汇编】五年(2019-2023)高考数学真题分项汇编(全国通用),文件包含专题12数列-学易金卷五年2019-2023高考数学真题分项汇编原卷版docx、专题12数列-学易金卷五年2019-2023高考数学真题分项汇编解析版docx等2份试卷配套教学资源,其中试卷共63页, 欢迎下载使用。
这是一份【真题汇编】高考数学 专题07 数列.zip,文件包含真题汇编高考数学专题07数列原卷版docx、真题汇编高考数学专题07数列解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
这是一份专题07 数列-2023年高考数学真题专题汇编(新高考卷),文件包含专题07数列原卷版docx、专题07数列解析版docx等2份试卷配套教学资源,其中试卷共66页, 欢迎下载使用。