年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    沪科版数学七年级下册 6.2 第2课时 实数的运算和大小比较课件

    沪科版数学七年级下册 6.2 第2课时 实数的运算和大小比较课件第1页
    沪科版数学七年级下册 6.2 第2课时 实数的运算和大小比较课件第2页
    沪科版数学七年级下册 6.2 第2课时 实数的运算和大小比较课件第3页
    沪科版数学七年级下册 6.2 第2课时 实数的运算和大小比较课件第4页
    沪科版数学七年级下册 6.2 第2课时 实数的运算和大小比较课件第5页
    沪科版数学七年级下册 6.2 第2课时 实数的运算和大小比较课件第6页
    沪科版数学七年级下册 6.2 第2课时 实数的运算和大小比较课件第7页
    沪科版数学七年级下册 6.2 第2课时 实数的运算和大小比较课件第8页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版七年级下册第6章 实数6.2 实数课前预习ppt课件

    展开

    这是一份初中数学沪科版七年级下册第6章 实数6.2 实数课前预习ppt课件,共25页。PPT课件主要包含了回顾与思考,实数与数轴上的点,这可以说明,反过来还可以说明,方法总结,练一练,总结归纳,b+a,abc,实数的运算等内容,欢迎下载使用。
    下列各数中,哪些是有理数,哪些是无理数?
    是有理数, 是无理数.
    思考:有理数可以做加、减、乘、除、乘方运算,实数可以吗?
    思考1:如图,直径为 1 个单位长度的圆从原点沿数轴向右滚动一周,圆上一点从原点到达 A 点,则数轴上表示点 A 的数是多少?
    因为圆的周长为 π,数轴上此点 A 表示的是无理数 π.
    思考2:如图,以数轴上的单位长度为边作一个正方形,以原点为圆心、这个正方形对角线的长为半径画弧,与数轴正半轴的交点记作 A,那么,点 A 表示什么数?
    点 A′ 是画弧时与数轴的另一交点,它表示什么数?
    推广:由上可知,无理数和有理数一样也可以用数轴上的点来表示.
    每一个实数都可以用数轴上唯一的一个点来表示.
    数轴上每一个点都表示唯一的一个实数.
    上面两个结论结合起来可以简洁地说成:
    实数和数轴上的点一一对应.
    如果在数轴上表示正实数、零、负实数,它们分别应该在数轴上的什么位置呢?
    例1 如图所示,数轴上 A,B 两点表示的数分别为-1 和 ,若点 A 是线段 BC 的中点,求点 C 所表示的实数.
    解:∵ 数轴上 A,B 两点表示的数分别为-1 和 ,∴ 点 B 到点 A 的距离为 1+ .则点 C 到点 A 的距离为 1+ .设点 C 表示的实数为 x,则点 A 到点 C 的距离为-1-x,∴-1-x = 1+ ,∴ x = -2-
    本题主要考查了实数与数轴之间的对应关系,其中利用了:当点 A 是线段 BC 的中点时,点 C 到点 A 的距离等于点 B 到点 A 的距离;两点之间的距离为两数差的绝对值.
    例2 如图所示,数轴上 A,B 两点表示的数分别为 和 5.1,则 A,B 两点之间表示整数的点共有 ( )A.6 个 B.5 个 C.4 个 D.3 个
    解析:∵ ≈ 1.414,∴ 和 5.1 之间的整数有 2,3,4,5,∴ A,B 两点之间表示整数的点共有 4 个.
    例3 分别求下列各数的相反数、倒数和绝对值.
    解:(1)∵ =-4,∴ 的相反数是 4,倒数是 ,绝对值是 4.(2) ∵ =15,∴ 的相反数是-15,倒数是 ,绝对值是 15.(3) 的相反数是- ,倒数是 ,绝对值是 .
    1. 的相反数是 , 的相反数是 , 的相反数是 .
    2. -π 的绝对值是 , = , = .
    1. 若 a 是一个实数,则实数 a 的相反数为 -a.
    2. ① 一个正实数的绝对值是它本身; ② 一个负实数的绝对值是它的相反数; ③ 0 的绝对值是 0.
    解:因为所以, 的相反数分别为由绝对值的意义得:
    填空:设 a,b,c 是任意实数,则
    (1)a + b = (加法交换律);
    (2)(a + b) + c = (加法结合律);
    (3)a + 0 = 0 + a = ;
    (4)a + (-a) = (-a) + a = ;
    (5)ab = (乘法交换律);
    (6)(ab)c = (乘法结合律);
    a + (b + c)
    (7) 1 · a = a · 1 = ;
    (8)a(b + c) = (乘法对于加法的分配律), (b + c)a = (乘法对于加法的分配律);
    (9)实数的减法运算规定为 a - b = a + ;
    (10)对于每一个非零实数 a,存在一个实数 b,满足 a · b = b · a = 1,我们把 b 叫做 a 的___;
    (11)实数的除法运算(除数 b≠0),规定为 a÷b = a · ;
    (12)实数有一条重要性质:如果 a≠0,b≠0,那么 ab__0.
    每个正实数有且只有两个平方根,它们互为相反数. 0 的平方根是 0.
    在实数范围内,负数没有平方根.
    在实数范围内,每个实数有且只有一个立方根,而且与它本身的符号相同.
    实数的平方根与立方根的性质:
    此外,前面所学的有关数、式、方程(组)的性质、法则和解法,对于实数仍然成立.
    例5 计算(结果保留小数点后两位):
    【方法总结】在实数运算中,如果遇到无理数,并且需要求出结果的近似值时,可按要求的精确度用相应的近似有限小数代替无理数,再进行计算.
    显示:3.162 277 66.
    精确到小数点后面第二位得:3.16.
    在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.例如:
    与 互为相反数;
    思考:实数怎么比较大小呢?
    与有理数规定的大小一样,数轴上右边的点表示的实数比左边的点表示的实数大.
    1. 正数大于零,负数小于零,正数大于负数;2. 两个正数,绝对值大的数较大;3. 两个负数,绝对值大的数反而小.
    与有理数一样,在实数范围内:
    例7 在数轴上表示下列各点,比较它们的大小,并用 “ < ”连接它们.
    熟记常见数的算术平方根的约数值有助于解题.
    (3) 的相反数是______,绝对值是______.
    (1)3.14 的相反数是_______,绝对值是_______;
    (2) 的相反数是______,绝对值是______;
    3. 用计算器计算(精确到 0.01):
    (1) ; (2) ; (3) .

    相关课件

    沪科版七年级下册6.2 实数教学课件ppt:

    这是一份沪科版七年级下册6.2 实数教学课件ppt,共21页。PPT课件主要包含了知识要点,实数的性质,实数的运算,实数的大小比较,什么是相反数,什么是绝对值,什么是倒数,a当a0时,当a0时,-a当a0时等内容,欢迎下载使用。

    初中沪科版第6章 实数6.2 实数习题课件ppt:

    这是一份初中沪科版第6章 实数6.2 实数习题课件ppt,共21页。

    沪科版七年级下册6.2 实数习题课件ppt:

    这是一份沪科版七年级下册6.2 实数习题课件ppt

    • 精品推荐
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map