![八年级下册数学暑假作业 (47)第1页](http://img-preview.51jiaoxi.com/2/3/15903027/0-1719406226907/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![八年级下册数学暑假作业 (47)第2页](http://img-preview.51jiaoxi.com/2/3/15903027/0-1719406226997/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![八年级下册数学暑假作业 (47)第3页](http://img-preview.51jiaoxi.com/2/3/15903027/0-1719406227034/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:八年级下册数学暑假作业
- 八年级下册数学暑假作业 (45) 试卷 0 次下载
- 八年级下册数学暑假作业 (46) 试卷 0 次下载
- 八年级下册数学暑假作业 (48) 试卷 0 次下载
- 八年级下册数学暑假作业 (49) 试卷 0 次下载
- 八年级下册数学暑假作业 (50) 试卷 0 次下载
八年级下册数学暑假作业 (47)
展开
这是一份八年级下册数学暑假作业 (47),共32页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
1. -2的绝对值是( )
A. 2B. C. D.
2. 下列窗花图案中,是轴对称图形的是( )
A. B.
C. D.
3. 函数中,自变量x的取值范围是
A. x>﹣1B. x<﹣1C. x≠﹣1D. x≠0
4. 下列式子因式分解正确的是( )
A. x2+2x+2=(x+1)2+1B. (2x+4)2=4x2+16x+16
C. x2﹣x+6=(x+3)(x﹣2)D. x2﹣1=(x+1)(x﹣1)
5. 如图,在△ABC中,DE∥BC,若=,则值为( )
A. B. C. D.
6. 下列命题是真命题的是( )
A. 平行四边形的对角线互相平分且相等
B. 任意多边形的外角和均为360°
C. 邻边相等的四边形是菱形
D. 两个相似比为1:2的三角形对应边上的高之比为1:4
7. 估算在哪两个整数之间( )
A. 0和1B. 1和2C. 2和3D. 3和4
8. 根据以下程序,当输入x=﹣2时,输出结果为( )
A. ﹣5B. ﹣2C. 0D. 3
9. 某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是( )
A. B. C. D.
10. 如图,反比例函数y=(k≠0,x>0)图象经过正方形ABCD的顶点A,边BC在x轴的正半轴上,连接OA,若BC=2OB,AD=4,则k的值为( )
A. 2B. 4C. 6D. 8
11. 如果关于x的分式方程有负数解,且关于y的不等式组无解,则符合条件的所有整数a的和为( )
A. ﹣2B. 0C. 1D. 3
12. 在矩形ABCD中,AB=3,BC=2,点E在BC边上,连接DE,将△DEC沿DE翻折,得到△DEC',C'E交AD于点F,连接AC'.若点F为AD的中点,则AC′的长度为( )
A. B. 2C. 2D. +1
二、填空题
13. 计算: _______.
14. 若=.则=_____.
15. 反比例函数y=图象上有两个点(x1,y1),(x2,y2),其中0<x1<x2,则y1,y2的大小关系是_____(用“<“连接).
16. 在菱形ABCD中,对角线AC、BD交于点O,点F为BC中点,过点F作FE⊥BC于点F交BD于点E,连接CE,若∠BDC=34°,则∠ECA=_____°.
17. 某日,王艳骑自行车到位于家正东方向的演奏厅听音乐会.王艳离家5分钟后自行车出现故障而且发现没有带钱包,王艳立即打电话通知在家看报纸的爸爸骑自行车赶来送钱包(王艳打电话和爸爸准备出门的时间忽略不计),同时王艳以原来一半的速度推着自行车继续走向演奏厅.爸爸接到电话后,立刻出发追赶王艳,追上王艳的同时,王艳坐上出租车并以爸爸速度的2倍赶往演奏厅(王艳打车和爸爸将钱包给王艳的时间忽略不计),同时爸爸立刻掉头以原速赶到位于家正西方3900米的公司上班,最后王艳比爸爸早到达目的地.在整个过程中,王艳和爸爸保持匀速行驶.如图是王艳与爸爸之间的距离y(米)与王艳出发时间x(分钟)之间的函数图象,则王艳到达演奏厅时,爸爸距离公司_____米.
18. 古语说:“春眠不觉晓”,每到初春时分,想必有不少人变得嗜睡,而且睡醒后精神不佳.我们可以在饮食方面进行防治,比如以下食物可防治春困:香椿、大蒜、韭菜、山药、麦片.春天即将来临时,某商人抓住商机,购进甲、乙、丙三种麦片,已知销售每袋甲种麦片的利润率为10%,每袋乙种麦片的利润率为20%,每袋丙种麦片的利润率为30%,当售出的甲、乙、丙三种麦片的袋数之比为1:3:1时,商人得到的总利润率为22%;当售出的甲、乙、丙三种变片的袋数之比为3:2:1时,商人得到的总利润率为20%:那么当售出的甲、乙、丙三种麦片的袋数之比为2:3;4时,这个商人得到的总利润率为_____(用百分号表最终结果).
三、解答题
19 解方程:
(1)
(2)2x2﹣2x﹣1=0
20. 如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD于点F,交CB于点E,且∠EAB=∠DCB.
(1)求∠B的度数:
(2)求证:BC=3CE.
21. 近年,教育部多次明确表示,今后中小学生参加体育活动情况、学生体质健康状况和运动技能等级纳入初中、高中学业水平考试,纳入学生综合素质评价体系.为更好掌握学生体育水平,制定合适的学生体育课内容,某初级中学对本校初一,初二两个年级的学生进行了体育水平检测.为了解情况,现从两个年级抽样调查了部分学生的检测成绩,过程如下:
【收集数据】从初一、初二年级分别随机抽取了20名学生的水平检测分数,数据如下:
【整理数据】按如下分段整理样本数据:
【分析数据】对样本数据进行如下统计:
【得出结论】
(1)根据统计,表格中a、b、c、d的值分别是 、 、 、 .
(2)若该校初一、初二年级的学生人数分别为800人和1000人,则估计在这次考试中,初一、初二成绩90分以上(含90分)的人数共有 人.
(3)根据以上数据,你认为 (填“初一“或“初二”)学生的体育整体水平较高.请说明理由(一条理由即可).
22. 在平面直角坐标系中,直线l1:y=x+5与反比例函数y=(k≠0,x>0)图象交于点A(1,n);另一条直线l2:y=﹣2x+b与x轴交于点E,与y轴交于点B,与反比例函数y=(k≠0,x>0)图象交于点C和点D(,m),连接OC、OD.
(1)求反比例函数解析式和点C的坐标;
(2)求△OCD的面积.
23. 我国古代数学名著《孙子算经》中有这样一道有关于自然数的题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?”就是说:一个数被3除余2,被5除余3,被7除余2,求这个数.《孙子算经》的解决方法大体是这样的先求被3除余2,同时能被5,7都整除的数,最小为140.再求被5除余3.同时能被3,7都整除的数,最小为63.最后求被7除余2,同时能被3,5都整除的数,最小为30.于是数140+63+30=233.就是一个所求的数.那么它减去或加上3,5,7的最小公倍数105的倍数,比如233﹣105=128,233+105=388…也是符合要求的数,所以符合要求的数有无限个,最小的是23.我们定义,一个自然数,若满足被2除余1,被3除余2,被5除余3,则称这个数是“魅力数”.
(1)判断43是否是“魅力数”?请说明理由;
(2)求出不大于100的所有的“魅力数”.
24. 每年6月,学校门口文具店都会购进毕业季畅销商品进行销售.已知校门口“小光文具店“在5月份就售出每本8元的A种品牌同学录90本,每本10元的B种品牌同学录175本.
(1)某班班长帮班上同学代买A种品牌和B种品牌同学录共27本,共花费246元,请问班长代买A种品牌和B种品牌同学录各多少本?
(2)该文具店在6月份决定将A种品牌同学录每本降价3元后销售,B种品牌同学录每本降价a%(a>0)后销售.于是,6月份该文具店A种品牌同学录的销量比5月份多了a%,B种品牌同学录的销量比5月份多了(a+20)%,且6月份A、B两种品牌的同学录的销售总额达到了2550元,求a的值.
25. 在平行四边形ABCD中,连接BD,过点B作BE⊥BD于点B交DA的延长线于点E,过点B作BG⊥CD于点G.
(1)如图1,若∠C=60°,∠BDC=75°,BD=6,求AE的长度;
(2)如图2,点F为AB边上一点,连接EF,过点F作FH⊥FE于点F交GB的延长线于点H,在△ABE的异侧,以BE为斜边作Rt△BEQ,其中∠Q=90°,若∠QEB=∠BDC,EF=FH,求证:BF+BH=BQ.
26. 如图1,在平面直角坐标系中,直线l:y=x+2与x轴交于点A,与y轴交于点B,点C在x轴的正半轴上,且OC=2OB.
(1)点F是直线BC上一动点,点M是直线AB上一动点,点H为x轴上一动点,点N为x轴上另一动点(不与H点重合),连接OF、FH、FM、FN和MN,当OF+FH取最小值时,求△FMN周长最小值;
(2)如图2,将△AOB绕着点B逆时针旋转90°得到△A′O′B,其中点A对应点为A′,点O对应点为O',连接CO',将△BCO'沿着直线BC平移,记平移过程中△BCO'为△B'C'O″,其中点B对应点为B',点C对应点为C',点O′对应点为O″,直线C'O″与x轴交于点P,在平移过程中,是否存在点P,使得△O″PC为等腰三角形?若存在请直接写出点P的坐标;若不存在,请说明理由.
八年级下册数学暑假作业
一、选择题
1. -2的绝对值是( )
A. 2B. C. D.
【答案】A
【解析】
【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义进行求解即可.
【详解】解:在数轴上,点-2到原点的距离是2,所以-2的绝对值是2,
故选:A.
2. 下列窗花图案中,是轴对称图形的是( )
A. B.
C. D.
【答案】A
【解析】
【分析】根据轴对称图形的概念求解即可.
【详解】解:A.是轴对称图形,符合题意;
B.不是轴对称图形,不合题意;
C.不是轴对称图形,不合题意;
D.不是轴对称图形,不合题意.
故选:A.
【点睛】本题考查了轴对称图形的概念,熟练掌握轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,那么这样的图形就叫做轴对称图形,是解题的关.
3. 函数中,自变量x的取值范围是
A. x>﹣1B. x<﹣1C. x≠﹣1D. x≠0
【答案】C
【解析】
【详解】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使在实数范围内有意义,必须.故选C.
4. 下列式子因式分解正确的是( )
A. x2+2x+2=(x+1)2+1B. (2x+4)2=4x2+16x+16
C. x2﹣x+6=(x+3)(x﹣2)D. x2﹣1=(x+1)(x﹣1)
【答案】D
【解析】
【分析】利用因式分解定义,以及因式分解的方法判断即可.
【详解】解:A、x2+2x+2不能进行因式分解,故A错误;
B、(2x+4)2=4x2+16x+16不符合因式分解的定义,故B错误;
C、,等式左右不相等,故C错误;
D、x2﹣1=(x+1)(x﹣1),正确
故选:D.
【点睛】本题考查了因式分解的概念及判断,掌握因式分解的定义是解题的关键.
5. 如图,在△ABC中,DE∥BC,若=,则的值为( )
A. B. C. D.
【答案】D
【解析】
【分析】利用相似三角形的面积比等于相似比的平方解答.
【详解】解:∵DE∥BC,
∴△ADE∽△ABC,
∴,
故选:D.
【点睛】本题考查了相似三角形的面积比等于相似比的平方这一知识点,熟知这条知识点是解题的关键.
6. 下列命题是真命题的是( )
A. 平行四边形的对角线互相平分且相等
B. 任意多边形的外角和均为360°
C. 邻边相等的四边形是菱形
D. 两个相似比为1:2的三角形对应边上的高之比为1:4
【答案】B
【解析】
【分析】利用平行四边形的性质、多边形的外角和、菱形的判定及相似三角形的性质判断后即可确定正确的选项.
【详解】解:A、平行四边形的对角线互相平分但不一定相等,故错误,是假命题;
B、任意多边形的外角和均为360°,正确,是真命题;
C、邻边相等的平行四边形是菱形,故错误,是假命题;
D、两个相似比为1:2的三角形对应边上的高之比为1:2,故错误,是假命题,
故选:B.
【点睛】本题考查了命题的判断,涉及平行四边形的性质、多边形的外角和、菱形的判定及相似三角形的性质等知识点,掌握基本知识点是解题的关键.
7. 估算在哪两个整数之间( )
A. 0和1B. 1和2C. 2和3D. 3和4
【答案】C
【解析】
【分析】原式化简后,估算即可确定出范围.
【详解】解:原式=﹣+1=+1,
∵,
∴,即,
则2﹣+1在2和3两个整数之间,
故选:C.
【点睛】本题考查了无理数的估算,能够正确化简,并熟知是解题的关键.
8. 根据以下程序,当输入x=﹣2时,输出结果为( )
A. ﹣5B. ﹣2C. 0D. 3
【答案】B
【解析】
【分析】根据所给的程序,用所给数的平方减去3,再把所得的结果和1比较大小,判断出需不需要继续计算即可.
【详解】解:当x=﹣2时,
(﹣2)2﹣3=1;
当x=1时,
12﹣3=﹣2;
∵﹣2<1,
∴当输入x=﹣2时,输出结果为﹣2.
故选:B.
【点睛】本题考查了程序式的基本算法及代数式的的计算,读懂题中的算法是解题的关键.
9. 某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是( )
A. B. C. D.
【答案】A
【解析】
【分析】根据现在生产台机器的时间与原计划生产台机器的时间相同,所以可得等量关系为:现在生产台机器时间原计划生产台时间.
【详解】解:设原计划平均每天生产x台机器,根据题意,列方程得:
,
故选A.
【点睛】此题主要考查了列分式方程应用,利用本题中“现在平均每天比原计划多生产台机器”这一个隐含条件,进而得出分式方程是解题关键.
10. 如图,反比例函数y=(k≠0,x>0)图象经过正方形ABCD的顶点A,边BC在x轴的正半轴上,连接OA,若BC=2OB,AD=4,则k的值为( )
A. 2B. 4C. 6D. 8
【答案】D
【解析】
【分析】根据正方形的性质,和BC=2OB,AD=4,可求出OB、AB,进而确定点A的坐标,代入求出k即可.
详解】解:∵正方形ABCD,AD=4,
∴AB=AD=4=BC,
∵BC=2OB,
∴OB=2,
∴A(2,4),代入y=得:k=8,
故选:D.
【点睛】本题考查了反比例函数与几何问题中k的求解,解题的关键是根据几何图形的性质得出反比例函数图象上点的坐标.
11. 如果关于x的分式方程有负数解,且关于y的不等式组无解,则符合条件的所有整数a的和为( )
A. ﹣2B. 0C. 1D. 3
【答案】A
【解析】
【分析】解关于y的不等式组,结合解集无解,确定a的范围,再由分式方程有负数解,且a为整数,即可确定符合条件的所有整数a的值,最后求所有符合条件的值之和即可.
【详解】由关于y的不等式组,可整理得
∵该不等式组解集无解,
∴2a+4≥﹣2
即a≥﹣3
又∵得x=
而关于x的分式方程有负数解,且x≠-1
∴a﹣4<0且a≠2
∴a<4且a≠2
于是﹣3≤a<4,且a为不等于2的整数
∴a=﹣3、﹣2、﹣1、0、1、3
则符合条件的所有整数a的和为-2.
故选A.
【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.
12. 在矩形ABCD中,AB=3,BC=2,点E在BC边上,连接DE,将△DEC沿DE翻折,得到△DEC',C'E交AD于点F,连接AC'.若点F为AD的中点,则AC′的长度为( )
A. B. 2C. 2D. +1
【答案】A
【解析】
【分析】过点C'作C'H⊥AD于点H,由折叠的性质可得CD=C'D=3,∠C=∠EC'D=90°,由勾股定理可求C'F=1,由三角形面积公式可求C'H的长,再由勾股定理可求AC'的长.
【详解】解:如图,过点C'作C'H⊥AD于点H,
∵点F为AD的中点,AD=BC=2
∴AF=DF=
∵将△DEC沿DE翻折
∴CD=C'D=3,∠C=∠EC'D=90°
在Rt△DC'F中,C'F=
∵S△C'DF=
∴×C'H=1×3
∴C'H=
∴FH=
∴AH=AF+FH=
在Rt△AC'H中,AC'=
故选:A.
【点睛】本题考查了矩形中的折叠问题、勾股定理,熟练掌握矩形的性质及勾股定理的运用是解题的关键.
二、填空题
13. 计算: _______.
【答案】-3
【解析】
【分析】根据零次幂的定义,负指数幂的定义计算即可.
【详解】1-4=-3,
故答案为:-3.
【点睛】此题考查计算能力,正确掌握零次幂的定义,负整数指数幂的定义是解题的关键.
14. 若=.则=_____.
【答案】1.
【解析】
【分析】直接利用已知将原式变形进而得出x,y之间的关系,进而得出答案.
【详解】解:∵=,
∴2y=x+y,
故y=x,
则=1.
故答案为:1.
【点睛】本题考查了比例的性质,正确将原式变形是解题的关键.
15. 反比例函数y=图象上有两个点(x1,y1),(x2,y2),其中0<x1<x2,则y1,y2的大小关系是_____(用“<“连接).
【答案】.
【解析】
【分析】根据反比例函数的k确定图象在哪两个象限,再根据(x1,y1),(x2,y2),其中,确定这两个点均在第一象限,根据在第一象限内y随x的增大而减小的性质做出判断.
【详解】解:反比例函数y=图象在一、三象限,
(x1,y1),(x2,y2)在反比例函数y=图象上,且,
因此(x1,y1),(x2,y2)在第一象限,
∵反比例函数y=在第一象限y随x的增大而减小,
∴,
故答案为:.
【点睛】本题考查了反比例函数的增减性,熟悉反比例函数的图象与性质是解题的关键.
16. 在菱形ABCD中,对角线AC、BD交于点O,点F为BC中点,过点F作FE⊥BC于点F交BD于点E,连接CE,若∠BDC=34°,则∠ECA=_____°.
【答案】22.
【解析】
【分析】根据菱形的性质可求出∠DBC和∠BCA度数,再根据线段垂直平分线的性质可知∠ECB=∠EBC,从而得出∠ECA=∠BCA﹣∠ECB度数.
【详解】解:∵四边形ABCD是菱形,
∴AC⊥BD,∠BDC=∠DBC=34°.
∠BCA=∠DCO=90°﹣34°=56°.
∵EF垂直平分BC,
∴∠ECF=∠DBC=34°.
∴∠ECA=56°﹣34°=22°.
故答案为22.
【点睛】本题考查了菱形的性质及线段垂直平分线的性质,综合运用上述知识进行推导论证是解题的关键.
17. 某日,王艳骑自行车到位于家正东方向的演奏厅听音乐会.王艳离家5分钟后自行车出现故障而且发现没有带钱包,王艳立即打电话通知在家看报纸的爸爸骑自行车赶来送钱包(王艳打电话和爸爸准备出门的时间忽略不计),同时王艳以原来一半的速度推着自行车继续走向演奏厅.爸爸接到电话后,立刻出发追赶王艳,追上王艳的同时,王艳坐上出租车并以爸爸速度的2倍赶往演奏厅(王艳打车和爸爸将钱包给王艳的时间忽略不计),同时爸爸立刻掉头以原速赶到位于家正西方3900米的公司上班,最后王艳比爸爸早到达目的地.在整个过程中,王艳和爸爸保持匀速行驶.如图是王艳与爸爸之间的距离y(米)与王艳出发时间x(分钟)之间的函数图象,则王艳到达演奏厅时,爸爸距离公司_____米.
【答案】3400.
【解析】
【分析】根据函数图象可知,王艳出发10分钟后,爸爸追上了王艳,根据此时爸爸的5分钟的行程等于王艳前5分钟的行程与后5分钟的行程和,得到爸爸的速度与王艳骑自行车的速度的关系,再根据函数图象可知,爸爸到赶到公司时,公司距离演奏厅的距离为9400米,再根据已知条件,便可求得家与演奏厅的距离,由函数图象又可知,王艳到达演奏厅的时间为秒,据此列出方程,求得王艳的速度与爸爸的速度,进而便可求得结果.
【详解】解:设王艳骑自行车的速度为xm/min,则爸爸的速度为:
(5x+x)÷5=x(m/min),
由函数图象可知,公司距离演奏厅的距离为9400米,
∵公司位于家正西方3900米,
∴家与演奏厅的距离为:9400﹣3900=5500(米),
根据题意得,5x+5×x+()×=5500,
解得,x=200(m/min),
∴爸爸的速度为:(m/min)
∴王艳到达演奏厅时,爸爸距离公司的距离为:5×300+3900﹣()×300=3400(m).
故答案为:3400.
【点睛】本题考查了函数图象与行程问题,解题的关键是将函数图象与实际的行程对应起来,列出方程,解出相关量.
18. 古语说:“春眠不觉晓”,每到初春时分,想必有不少人变得嗜睡,而且睡醒后精神不佳.我们可以在饮食方面进行防治,比如以下食物可防治春困:香椿、大蒜、韭菜、山药、麦片.春天即将来临时,某商人抓住商机,购进甲、乙、丙三种麦片,已知销售每袋甲种麦片的利润率为10%,每袋乙种麦片的利润率为20%,每袋丙种麦片的利润率为30%,当售出的甲、乙、丙三种麦片的袋数之比为1:3:1时,商人得到的总利润率为22%;当售出的甲、乙、丙三种变片的袋数之比为3:2:1时,商人得到的总利润率为20%:那么当售出的甲、乙、丙三种麦片的袋数之比为2:3;4时,这个商人得到的总利润率为_____(用百分号表最终结果).
【答案】25%.
【解析】
【分析】设甲、乙、丙三种蜂蜜的进价分别为a、b、c,丙蜂蜜售出瓶数为cx,则当售出的甲、乙、丙蜂蜜瓶数之比为1:3:1时,甲、乙蜂蜜售出瓶数分别为ax、3bx;当售出的甲、乙、丙蜂蜜瓶数之比为3:2:1时,甲、乙蜂蜜售出瓶数分别为3ax、2bx;列出方程,解方程求出,即可得出结果.
【详解】解:设甲、乙、丙三种麦片的进价分别为a、b、c,丙麦片售出袋数为cx,
由题意得:,
解得:,
∴,
故答案为:25%.
【点睛】本题考查了方程思想解决实际问题,解题的关键是通过题意列出方程,得出a、b、c的关系,进而求出利润率.
三、解答题
19. 解方程:
(1)
(2)2x2﹣2x﹣1=0
【答案】(1)x=15;(2)x1=,x2=.
【解析】
【分析】(1)先把分式方程转化成整式方程,求出方程的解即可;
(2)先求出b2﹣4ac的值,再代入公式求出即可.
【详解】解:(1)方程两边都乘以x﹣7得:x+1=2(x﹣7),
解得:x=15,
检验:当x=15时,x﹣7≠0,
所以x=15是原方程的解,
即原方程的解是x=15;
(2)2x2﹣2x﹣1=0,
b2﹣4ac=(﹣2)2﹣4×2×(﹣1)=12,
x=,
x1=,x2=.
【点睛】本题考查了分式方程及一元二次方程的解法,解题的关键是熟悉分式方程及一元二次方程的解法,注意分式方程必须要检验.
20. 如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD于点F,交CB于点E,且∠EAB=∠DCB.
(1)求∠B的度数:
(2)求证:BC=3CE.
【答案】(1)∠B=30°;(2)详见解析.
【解析】
【分析】(1)根据余角的性质得到∠ECF=∠CAF,求得∠CAD=2∠DCB,由CD是斜边AB上的中线,得到CD=BD,推出∠CAB=2∠B,于是得到结论;
(2)根据直角三角形的性质即可得到结论.
【详解】解:(1)∵AE⊥CD,
∴∠AFC=∠ACB=90°,
∴∠CAF+∠ACF=∠ACF+∠ECF=90°,
∴∠ECF=∠CAF,
∵∠EAD=∠DCB,
∴∠CAD=2∠DCB,
∵CD是斜边AB上的中线,
∴CD=BD,
∴∠B=∠DCB,
∴∠CAB=2∠B,
∵∠B+∠CAB=90°,
∴∠B=30°;
(2)∵∠B=∠BAE=∠CAE=30°,
∴AE=BE,CE=AE,
∴BC=3CE.
【点睛】本题主要考查了直角三角形的性质,解题的关键是灵活运用直角三角形的性质进行边角关系的推导.
21. 近年,教育部多次明确表示,今后中小学生参加体育活动情况、学生体质健康状况和运动技能等级纳入初中、高中学业水平考试,纳入学生综合素质评价体系.为更好掌握学生体育水平,制定合适的学生体育课内容,某初级中学对本校初一,初二两个年级的学生进行了体育水平检测.为了解情况,现从两个年级抽样调查了部分学生的检测成绩,过程如下:
【收集数据】从初一、初二年级分别随机抽取了20名学生的水平检测分数,数据如下:
【整理数据】按如下分段整理样本数据:
【分析数据】对样本数据进行如下统计:
【得出结论】
(1)根据统计,表格中a、b、c、d的值分别是 、 、 、 .
(2)若该校初一、初二年级的学生人数分别为800人和1000人,则估计在这次考试中,初一、初二成绩90分以上(含90分)的人数共有 人.
(3)根据以上数据,你认为 (填“初一“或“初二”)学生的体育整体水平较高.请说明理由(一条理由即可).
【答案】(1)3、6、84.5、85;(2)490;(3) “初二”,理由详见解析.
【解析】
【分析】(1)根据给出的统计表求出a、b,根据中位数和众数的概念求出c、d;
(2)用样本估计总体,得到答案;
(3)根据平均数性质解答.
【详解】解:(1)由统计表中的数据可知,a=3,b=6,c==84.5,d=85,
故答案为:3;6;84.5;85;
(2)初一成绩90分以上(含90分)的人数共有:800×=240(人),
初二成绩90分以上(含90分)的人数共有1000×=250(人),
240+250=490(人),
故答案为:490;
(3)“初二”学生的体育整体水平较高,
原因是:初二年级的平均数大于初一年级的平均数,
故答案为:“初二”.
【点睛】本题考查了数据的统计与分析,熟知平均数、中位数、众数、方差等的实际意义是解题的关键.
22. 在平面直角坐标系中,直线l1:y=x+5与反比例函数y=(k≠0,x>0)图象交于点A(1,n);另一条直线l2:y=﹣2x+b与x轴交于点E,与y轴交于点B,与反比例函数y=(k≠0,x>0)图象交于点C和点D(,m),连接OC、OD.
(1)求反比例函数解析式和点C的坐标;
(2)求△OCD的面积.
【答案】(1)y=,点C(6,1);(2).
【解析】
【分析】(1)点A(1,n)在直线l1:y=x+5的图象上,可求点A的坐标,进而求出反比例函数关系式,点D在反比例函数的图象上,求出点D的坐标,从而确定直线l2:y=﹣2x+b的关系式,联立求出直线l2与反比例函数的图象的交点坐标,确定点C的坐标,
(2)求出直线l2与x轴、y轴的交点B、E的坐标,利用面积差可求出△OCD的面积.
【详解】解:(1)∵点A(1,n)在直线l1:y=x+5的图象上,
∴n=6,
∴点A(1,6)代入y=得,
k=6,
∴反比例函数y=,
当x=时,y=12,
∴点D(,12)代入直线l2:y=﹣2x+b得,
b=13,
∴直线l2:y=﹣2x+13,
由题意得:解得:,,
∴点C(6,1)
答:反比例函数解析式y=,点C的坐标为(6,1).
(2)直线l2:y=﹣2x+13,与x轴的交点E(,0)与y轴的交点B(0,13)
∴S△OCD=S△BOE﹣S△BOD﹣S△OCE
答:△OCD的面积为.
【点睛】本题考查了待定系数法求反比例函数解析式、反比例函数与一次函数交点问题、以及反比例函数与几何面积的求解,解题的关键是灵活处理反比例函数与一次函数及几何的关系.
23. 我国古代数学名著《孙子算经》中有这样一道有关于自然数的题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?”就是说:一个数被3除余2,被5除余3,被7除余2,求这个数.《孙子算经》的解决方法大体是这样的先求被3除余2,同时能被5,7都整除的数,最小为140.再求被5除余3.同时能被3,7都整除的数,最小为63.最后求被7除余2,同时能被3,5都整除的数,最小为30.于是数140+63+30=233.就是一个所求的数.那么它减去或加上3,5,7的最小公倍数105的倍数,比如233﹣105=128,233+105=388…也是符合要求的数,所以符合要求的数有无限个,最小的是23.我们定义,一个自然数,若满足被2除余1,被3除余2,被5除余3,则称这个数是“魅力数”.
(1)判断43是否是“魅力数”?请说明理由;
(2)求出不大于100的所有的“魅力数”.
【答案】(1)43不“魅力数”,理由详见解析;(2)23、53、83.
【解析】
【分析】(1)验证43是否满足“被2除余1,被3除余2,被5除余3”这三个条件,若全部满足,则为“魅力数”,若不全满足,则不是“魅力数”;
(2)根据样例,先求被2除余1,同时能被3,5都整除的数,最小为15.再求被3除余2.同时能被2,5都整除的数,最小为20.最后求被5除余3,同时能被2,3都整除的数,最小为18.于是数15+20+18=53,再用它减去或加上2,3,5的最小公倍数30的倍数得结果.
【详解】解:(1)43不是“魅力数”.理由如下:
∵43=14×3+1,
∴43被3除余1,不余2,
∴根据“魅力数”的定义知,43不是“魅力数”;
(2)先求被2除余1,同时能被3,5都整除的数,最小为15.
再求被3除余2.同时能被2,5都整除的数,最小为20.
最后求被5除余3,同时能被2,3都整除的数,最小为18.
∴数15+20+18=53是“魅力数”,
∵2、3、5的最小公倍数为30,
∴53﹣30=23也是“魅力数”,
53+30=83也是“魅力数”,
故不大于100的所有的“魅力数”有23、53、83三个数.
【点睛】本题考查了数学文化问题,读懂题意,明确定义是解题的关键.
24. 每年6月,学校门口的文具店都会购进毕业季畅销商品进行销售.已知校门口“小光文具店“在5月份就售出每本8元的A种品牌同学录90本,每本10元的B种品牌同学录175本.
(1)某班班长帮班上同学代买A种品牌和B种品牌同学录共27本,共花费246元,请问班长代买A种品牌和B种品牌同学录各多少本?
(2)该文具店在6月份决定将A种品牌同学录每本降价3元后销售,B种品牌同学录每本降价a%(a>0)后销售.于是,6月份该文具店A种品牌同学录的销量比5月份多了a%,B种品牌同学录的销量比5月份多了(a+20)%,且6月份A、B两种品牌的同学录的销售总额达到了2550元,求a的值.
【答案】(1)班长代买A种品牌同学录12本,B种品牌同学录15本;(2)a的值为20.
【解析】
【分析】(1)设班长代买A种品牌同学录x本,B种品牌同学录y本,根据总价=单价×数量结合购买A、B两种品牌同学录27本共花费246元,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)根据总价=单价×数量,即可得出关于a的一元二次方程,解之取其正值即可得出结论.
详解】解:(1)设班长代买A种品牌同学录x本,B种品牌同学录y本,
依题意,得:,
解得:.
答:班长代买A种品牌同学录12本,B种品牌同学录15本.
(2)依题意,得:(8﹣3)×90(1+a%)+10(1﹣a%)×175[1+(a+20)%]=2550,
整理,得:a2﹣20a=0,
解得:a1=20,a2=0(舍去).
答:a的值为20.
【点睛】本题考查了二元一次方程组和一元二次方程的实际应用,根据实际问题找出等量关系,列出方程是解题的关键.
25. 在平行四边形ABCD中,连接BD,过点B作BE⊥BD于点B交DA的延长线于点E,过点B作BG⊥CD于点G.
(1)如图1,若∠C=60°,∠BDC=75°,BD=6,求AE的长度;
(2)如图2,点F为AB边上一点,连接EF,过点F作FH⊥FE于点F交GB的延长线于点H,在△ABE的异侧,以BE为斜边作Rt△BEQ,其中∠Q=90°,若∠QEB=∠BDC,EF=FH,求证:BF+BH=BQ.
【答案】(1)6﹣2;(2)详见解析.
【解析】
【分析】(1)根据平行四边形性质可证:△BDE是等腰直角三角形,运用勾股定理可求DE和AD,AE即可求得;
(2)过点E作ET⊥AB交BA的延长线于T,构造直角三角形,由平行四边形性质及直角三角形性质可证:△BEQ≌△BET(AAS),△BFH≌△TEF(AAS),进而可证得结论.
【详解】解:(1)如图1,过点D作DR⊥BC于R,
∵ABCD是平行四边形
∴AB∥CD,AD∥BC,AD=BC
∵∠C=60°,∠BDC=75°,
∴∠CBD=180°﹣(∠C+∠BDC)=45°
∴∠ADB=∠CBD=45°
∵BE⊥BD
∴∠DBE=90°
∴∠E=∠BDE=45°
∴DE=BD=12
∵DR⊥BC
∴∠BRD=∠CRD=90°
∴∠BDR=∠CBD=45°,
∴DR=BR
由勾股定理可得即
∴DR=BR=6
∵∠C=60°
∴∠CDR=90°﹣60°=30°
∴CR=2,CD=4
∴AD=BC=DR+CR=6+2,
∴AE=DE﹣AD=12﹣(6+2)=6﹣2;
(2)如图2,过点E作ET⊥AB交BA的延长线于T,则∠T=90°
∵ABCD是平行四边形
∴AB∥CD,
∴∠ABD=∠BDC
∵∠QEB=∠BDC
∴∠QEB=∠ABD
∵BG⊥CD,BE⊥BD,FH⊥FE
∴∠BGC=∠ABG=∠DBE=∠EFH=∠Q=90°
∴∠EBT+∠BET=∠EBT+∠ABD=∠EFT+∠BFH=∠EFT+∠FET=90°,
∴∠BET=∠ABD=∠QEB,∠BFH=∠FET
∵BE=BE,EF=FH
∴△BEQ≌△BET(AAS),△BFH≌△TEF(AAS)
∴BQ=BT,BH=FT
∵BF+FT=BT
∴BF+BH=BQ.
【点睛】本题考查了平行四边形的性质、勾股定理以及全等三角形的性质与判定,解题的关键是灵活运用平行四边形及直角三角形的性质.
26. 如图1,在平面直角坐标系中,直线l:y=x+2与x轴交于点A,与y轴交于点B,点C在x轴的正半轴上,且OC=2OB.
(1)点F是直线BC上一动点,点M是直线AB上一动点,点H为x轴上一动点,点N为x轴上另一动点(不与H点重合),连接OF、FH、FM、FN和MN,当OF+FH取最小值时,求△FMN周长的最小值;
(2)如图2,将△AOB绕着点B逆时针旋转90°得到△A′O′B,其中点A对应点为A′,点O对应点为O',连接CO',将△BCO'沿着直线BC平移,记平移过程中△BCO'为△B'C'O″,其中点B对应点为B',点C对应点为C',点O′对应点为O″,直线C'O″与x轴交于点P,在平移过程中,是否存在点P,使得△O″PC为等腰三角形?若存在请直接写出点P的坐标;若不存在,请说明理由.
【答案】(1);(2)满足条件的点P为:(8+2,0)或(,0)或(5,0)
【解析】
【分析】(1)先求出点A,点B坐标,用待定系数法求出直线BC的解析式,作点O关于直线BC的对称点O'(),过点O'作O'H⊥OC于点F,交BC于点H,此时OF+FH的值最小,求出点F坐标,作点F关于直线AB与直线OC的对称点,连接F'F''交直线AB于点M,交直线OC于点N,此时△FMN周长有最小值,由两点距离公式可求△FMN周长的最小值;
(2)分O''C=PC,O''P=PC,O''P=O''C三种情况讨论,由等腰三角形的性质可求解.
【详解】解:(1)∵直线y=x+2与x轴交于点A,与y轴交于点B,
∴当x=0时,y=2,
当y=0时,x=﹣2,
∴点A(﹣2,0),点B(0,2)
∴OB=2
∵OC=2OB.
∴OC=4
∴点C(4,0)
设直线BC解析式为:y=kx+2,且过点C(4,0)
∴0=4k+2
∴k=
∴直线BC解析式为:y=x+2,
如图,作点O关于直线BC的对称点O'(),过点O'作O'H⊥OC于点F,交BC于点H,此时OF+FH的值最小.
∴点F的横坐标为
∴点F()
作点F关于直线OC的对称点F'(),
作点F关于直线AB的对称点F''()
连接F'F''交直线AB于点M,交直线OC于点N,此时△FMN周长有最小值,
∴△FMN周长的最小值=
(2)∵将△AOB绕着点B逆时针旋转90°得到△A'O’B,
∴O'点坐标(2,2)
设直线O'C的解析式为:y=mx+b
∴
∴
∴直线O'C的解析式为:y=﹣x+4
如图,过点O'作O'E⊥OC
∴OE=2,O'E=2
∴EC=O'E=2
∴∠O'CE=45°
∵将△BCO'沿着直线BC平移,
∴O''O'∥BC,O'C∥O''C',
∴设O'O''的解析式为y=x+n,且过(2,2)
∴2=×2+n
∴n=3
∴直线O'O''的解析式为y=x+3
若CO''=CP,
∵O'C∥O''C',
∴∠O'CE=∠O''PC=45°
∵CO''=CP
∴∠CO''P=∠O''PC=45°
∴∠O''CP=90°
∴点O''的横坐标为4,
∴当x=4时,y=×4+3=1
∴点O''(4,1)
∴CO''=1=CP
∴点P(5,0)
若CO''=O''P,如图,过点O''作O''N⊥CP于N,
∵O'C∥O''C',
∴∠O'CE=∠O''PC=45°
∵CO''=O''P
∴∠O''CP=∠CPO''=45°,
∴∠CO''P=90°,且CO''=O''P,O''N⊥CP
∴CN=PN=O''N=CP
设CP=a,
∴CN=PN=O''N=CP=a
∴点O''(4+a,a),且直线O'O''的解析式为y=﹣x+3
∴a=﹣(4+a)+3
∴a=
∴CP=
∴点P(,0)
若CP=O''P,如图,过点O''作O''N⊥CP于N
∵O'C∥O''C',
∴∠O'CE=∠O''PM=45°
∴∠O''PN=∠O''PM=45°,且O''N⊥CP
∴∠NPO''=∠PO''N=45°
∴PN=O''N
∴O''P=PN=CP
设PN=b,则O''N=b,CP=PO''=b
∴点O''坐标(4+b+b,﹣b),且直线O'O''的解析式为y=x+3
∴﹣b=×(4+b+b)+3
∴b=2+2
∴CP=4+2
∴点P坐标(8+2,0)
综上所述:满足条件点P为:(8+2,0)或(,0)或(5,0)
【点睛】本题考查了利用轴对称思想解决线段和最小值或周长最小的问题,以及等腰三角形的分类讨论问题,综合性较强,综合运用上述几何知识是解题的关键初一年级
88
58
44
90
71
88
95
63
70
90
81
92
84
84
95
31
90
85
76
85
初二年级
75
82
85
85
76
87
69
93
63
84
90
85
64
85
91
96
68
97
57
88
分段
年级
0≤x<60
60≤x<70
70≤x<80
80≤x<90
90≤x≤100
初一年级
a
1
3
7
b
初二年级
1
4
2
8
5
统计量
年级
平均数
中位数
众数
方差
初一年级
78
c
90
284.6
初二年级
81
85
d
1264
初一年级
88
58
44
90
71
88
95
63
70
90
81
92
84
84
95
31
90
85
76
85
初二年级
75
82
85
85
76
87
69
93
63
84
90
85
64
85
91
96
68
97
57
88
分段
年级
0≤x<60
60≤x<70
70≤x<80
80≤x<90
90≤x≤100
初一年级
a
1
3
7
b
初二年级
1
4
2
8
5
统计量
年级
平均数
中位数
众数
方差
初一年级
78
c
90
284.6
初二年级
81
85
d
126.4
相关试卷
这是一份八年级下册数学暑假作业 (45),共32页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份八年级下册数学暑假作业 (34),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份八年级下册数学暑假作业 (30),共6页。试卷主要包含了选择题,计算,几何证明题,统计应用题,一次函数等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)