2024年甘肃省临夏州中考数学试卷(无答案)
展开考生注意:本试卷满分为120分,考试时间为120分钟.所有试题均在答题卡上作答,否则无效.
一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.
1.下列各数中,是无理数的是( )
A.B.C.
2.马家窑彩陶绚丽典雅,符号丰富,被称为彩陶文化的“远古之光”.如图是一件马家窑彩陶作品的立体图形,有关其三视图说法正确的是( )
A.主视图和左视图完全相同B.主视图和俯视图完全相同
C.左视图和俯视图完全相同D.三视图各不相同
3.据央视财经《经济信息联播》消息:甘肃天水凭借一碗香喷喷的麻辣烫成为最“热辣滚烫”的顶流.2024年3月份,天水市累计接待游客464万人次,旅游综合收入27亿元.将数据“27亿”用科学记数法表示为( )
A.B.C.D.
4.下列各式运算结果为的是( )
A.B.C.D.
5.一次函数的函数值随的增大而减小,它的图象不经过的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
6.如图,是的直径,,则( )
A.B.C.D.
7.端午节期间,某商家推出“优惠酬宾”活动,决定每袋粽子降价2元销售.细心的小夏发现,降价后用240元可以比降价前多购买10袋,求:每袋粽子的原价是多少元?设每袋粽子的原价是元,所得方程正确的是( )
A.B.
C.D.
8.如图,在中,,,则的长是( )
A.3B.6C.8D.9
9.如图,是坐标原点,菱形的顶点在轴的负半轴上,顶点的坐标为,则顶点的坐标为( )
A.B.C.D.
10.如图1,矩形中,为其对角线,一动点从出发,沿着的路径行进,过点作,垂足为.设点的运动路程为,为,与的函数图象如图2,则的长为( )
A.B.C.D.
二、填空题:本大题共6小题,每小题3分,共18分.
11.因式分解:______.
12.“香渡栏干屈曲,红妆映、薄绮疏棂.”图1窗棂的外边框为正六边形(如图2),则该正六边形的每个内角为______.
13.若关于的一元二次方程有两个相等的实数根,则的值为______.
14.如图,在中,点的坐标为,点的坐标为,点的坐标为,点在第一象限(不与点重合),且与全等,点的坐标是______.
15.如图,对折边长为2的正方形纸片,为折痕,以点为圆心,为半径作弧,分别交,于,两点,则的长度为______(结果保留).
16.如图,等腰中,,,将沿其底边中线向下平移,使的对应点满足,则平移前后两三角形重叠部分的面积是______.
三、解答题:本大题共6小题,共32分.解答时,应写出必要的文字说明、证明过程或演算步骤.
17.(4分)计算:.
18.(4分)化简:.
19.(4分)解不等式组:.
20.(6分)物理变化和化学变化的区别在于是否有新物质的生成.某学习小组在延时课上制作了,,,四张卡片,四张卡片除图片内容不同外,其他没有区别,放置于暗箱中摇匀.
(1)小临从四张卡片中随机抽取一张,抽中卡片的概率是______;
(2)小夏从四张卡片中随机抽取两张,用列表法或画树状图法求小夏抽取两张卡片内容均为化学变化的概率.
21.(6分)根据背景素材,探索解决问题.
22.(8分)乾元塔(图1)位于临夏州临夏市的北山公园内,共九级,为砼框架式结构,造型独特别致,远可眺太子山露骨风月,近可收临夏市城建全貌,巍巍峨峨,傲立苍穹.某校数学兴趣小组在学习了“解直角三角形”之后,开展了测量乾元塔高度的实践活动.为乾元塔的顶端,,点,在点的正东方向,在点用高度为1.6米的测角仪(即米)测得点仰角为,向西平移14.5米至点,测得点仰角为,请根据测量数据,求乾元塔的高度.(结果保留整数,参考数据:,,)
四、解答题:本大题共5小题,共40分.解答时,应写出必要的文字说明、证明过程或演算步骤.
23.(7分)环球网消息称:近年来的电动自行车火灾事故都是充电时发生的,超过一半的电动自行车火灾发生在夜间充电的过程中.为了规避风险,某校政教处对学生进行规范充电培训活动,并对培训效果按10分制进行检测评分.为了解这次培训的效果,现从各年级随机抽取男、女生各10名的检测成绩作为样本进行整理,并绘制成如下不完整的统计图表:
抽取的10名女生检测成绩统计表
注:10名女生检测成绩的中位数为8.5分.
请根据以上信息,完成下列问题:
(1)样本中男生检测成绩为10分的学生数是,众数为______分;
(2)女生检测成绩表中的______,______;
(3)已知该校有男生545人,女生360人,若认定检测成绩不低于9分为“优秀”,估计全校检测成绩达到“优秀”的人数.
24.(7分)如图,直线与相切于点,为的直径,过点作于点,延长交直线于点.
(1)求证:平分;
(2)如果,,求的半径.
25.(8分)如图,直线与双曲线交于,两点,已知点坐标为.
(1)求,的值;
(2)将直线向上平移个单位长度,与双曲线在第二象限的图象交于点,与轴交于点,与轴交于点,若,求的值.
26.(8分)如图1,在矩形中,点为边上不与端点重合的一动点,点是对角线上一点,连接,交于点,且.
【模型建立】
(1)求证:;
【模型应用】
(2)若,,,求的长;
【模型迁移】
(3)如图2,若矩形是正方形,,求的值.
27.(10分)在平面直角坐标系中,抛物线与轴交于,两点,与轴交于点,作直线.
(1)求抛物线的解析式.
(2)如图1,点是线段上方的抛物线上一动点,过点作,垂足为,请问线段是否存在最大值?若存在,请求出最大值及此时点的坐标;若不存在请说明理由.
(3)如图2,点是直线上一动点,过点作线段(点在直线下方),已知,若线段与抛物线有交点,请直接写出点的横坐标的取值范围.
平面直角坐标系中画一个边长为2的正六边形
背景素材
六等分圆原理,也称为圆周六等分问题,是一个古老而经典的几何问题,旨在解决如何使用直尺和圆规将一个圆分成六等份的问题.这个问题由欧几里得在其名著《几何原本》中详细阐述.
已知条件
点与坐标原点重合,点在轴的正半轴上且坐标为
操作步骤
①分别以点,为圆心,长为半径作弧,两弧交于点;
②以点为圆心,长为半径作圆;
③以的长为半径,在上顺次截取;
④顺次连接,,,,,得到正六边形.
问题解决
任务一
根据以上信息,请你用不带刻度的直尺和圆规,在图中完成这道作图题(保留作图痕迹,不写作法)
任务二
将正六边形绕点顺时针旋转,直接写出此时点所在位置的坐标:______.
成绩/分
6
7
8
9
10
人数
1
2
3
2024年甘肃省临夏州中考数学试卷(含答案): 这是一份2024年甘肃省临夏州中考数学试卷(含答案),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年甘肃省临夏州中考真题数学试卷: 这是一份2024年甘肃省临夏州中考真题数学试卷,共4页。
2023年甘肃省临夏州中考数学试卷: 这是一份2023年甘肃省临夏州中考数学试卷,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。