开学活动
搜索
    上传资料 赚现金

    高考数学一轮复习考点探究与题型突破第59讲 随机事件的概率与古典概型(原卷版+解析)

    高考数学一轮复习考点探究与题型突破第59讲 随机事件的概率与古典概型(原卷版+解析)第1页
    高考数学一轮复习考点探究与题型突破第59讲 随机事件的概率与古典概型(原卷版+解析)第2页
    高考数学一轮复习考点探究与题型突破第59讲 随机事件的概率与古典概型(原卷版+解析)第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学一轮复习考点探究与题型突破第59讲 随机事件的概率与古典概型(原卷版+解析)

    展开

    这是一份高考数学一轮复习考点探究与题型突破第59讲 随机事件的概率与古典概型(原卷版+解析),共25页。试卷主要包含了样本空间和随机事件,两个事件的关系和运算,古典概型,古典概型的概率公式,概率的性质等内容,欢迎下载使用。

    1.样本空间和随机事件
    (1)样本点和有限样本空间
    ①样本点:随机试验E的每个可能的基本结果称为样本点,常用ω表示.
    全体样本点的集合称为试验E的样本空间,常用Ω表示.
    ②有限样本空间:如果一个随机试验有n个可能结果ω1,ω2,…,ωn,则称样本空间Ω={ω1,ω2,…,ωn}为有限样本空间.
    (2)随机事件
    ①定义:将样本空间Ω的子集称为随机事件,简称事件.
    ②表示:大写字母A,B,C,….
    ③随机事件的极端情形:必然事件、不可能事件.
    2.两个事件的关系和运算
    3.频率与概率
    (1)频率的稳定性
    一般地,随着试验次数n的增大,频率偏离概率的幅度会缩小,即事件A发生的频率fn(A)会逐渐稳定于事件A发生的概率P(A),我们称频率的这个性质为频率的稳定性.
    (2)频率稳定性的作用:可以用频率fn(A)估计概率P(A).
    4.古典概型
    (1)有限性:样本空间的样本点只有有限个;
    (2)等可能性:每个样本点发生的可能性相等.
    5.古典概型的概率公式
    一般地,设试验E是古典概型,样本空间Ω包含n个样本点,事件A包含其中的k个样本点,则定义事件A的概率P(A)=eq \f(k,n)=eq \f(nA,nΩ).
    其中,n(A)和n(Ω)分别表示事件A和样本空间Ω包含的样本点个数.
    6.概率的性质
    性质1:对任意的事件A,都有P(A)≥0;
    性质2:必然事件的概率为1,不可能事件的概率为0,即P(Ω)=1,P(∅)=0;
    性质3:如果事件A与事件B互斥,那么P(A∪B)=P(A)+P(B);
    性质4:如果事件A与事件B互为对立事件,那么P(B)=1-P(A),P(A)=1-P(B);
    性质5:如果A⊆B,那么P(A)≤P(B),由该性质可得,对于任意事件A,因为∅⊆A⊆Ω,所以0≤P(A)≤1.
    性质6:设A,B是一个随机试验中的两个事件,有P(A∪B)=P(A)+P(B)-P(A∩B).
    考点1 随机事件与样本空间
    [名师点睛]
    确定样本空间的方法
    (1)必须明确事件发生的条件.
    (2)根据题意,按一定的次序列出问题的答案.特别要注意结果出现的机会是均等的,按规律去写,要做到既不重复也不遗漏.
    [典例]
    1.在1,2,3,…,10这十个数字中,任取三个不同的数字,那么“这三个数字的和大于5”这一事件是( )
    A.必然事件 B.不可能事件
    C.随机事件 D.以上选项均有可能
    2.一只口袋装有除颜色外,形状、大小等完全相同的2个白球,3个黑球,4个红球,从中分两次依次取两个球.
    (1)写出这个试验的样本空间;
    (2)“至少有1个白球”这一事件包含哪几个样本点?
    [举一反三]
    1.下列说法错误的是( )
    A.任一事件的概率总在[0,1]内B.不可能事件的概率一定为0
    C.必然事件的概率一定为1D.概率是随机的,在试验前不能确定
    2.袋中有大小、形状相同的红球、黑球各一个,现在有放回地随机摸3次,每次摸取一个,观察摸出球的颜色,则此随机试验的样本点个数为 ( )
    A.5 B.6 C.7 D.8
    考点2 事件的关系与运算
    [名师点睛]
    1.准确把握互斥事件与对立事件的概念:(1)互斥事件是不可能同时发生的事件,但也可以同时不发生;(2)对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生.
    2.判别互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两个事件为对立事件,对立事件一定是互斥事件.
    [典例]
    1.(多选)若干个人站成排,其中不是互斥事件的是( )
    A.“甲站排头”与“乙站排头”
    B.“甲站排头”与“乙不站排尾”
    C.“甲站排头”与“乙站排尾”
    D.“甲不站排头”与“乙不站排尾”
    2.在一次随机试验中,彼此互斥的事件A,B,C,D发生的概率分别是0.2,0.2,0.3,0.3,则下列说法正确的是( )
    A.A∪B与C是互斥事件,也是对立事件
    B.B∪C与D是互斥事件,也是对立事件
    C.A∪C与B∪D是互斥事件,但不是对立事件
    D.A与B∪C∪D是互斥事件,也是对立事件
    3.(多选)口袋里装有1红,2白,3黄共6个除颜色外完全相同的小球,从中取出两个球,事件A=“取出的两个球同色”,B=“取出的两个球中至少有一个黄球”,C=“取出的两个球至少有一个白球”,D=“取出的两个球不同色”,E=“取出的两个球中至多有一个白球”.下列判断正确的是( )
    A.A与D为对立事件
    B.B与C是互斥事件
    C.C与E是对立事件
    D.P(C∪E)=1
    [举一反三]
    1.(2023·长春模拟)口袋中装有3个红球和4个黑球,每个球编有不同的号码,现从中取出3个球,则互斥而不对立的事件是( )
    A.至少有1个红球与至少有1个黑球
    B.至少有1个红球与都是黑球
    C.至少有1个红球与至多有1个黑球
    D.恰有1个红球与恰有2个红球
    2.(多选)某人打靶时连续射击两次,设事件A=“只有一次中靶”,B=“两次都中靶”,则下列结论正确的是( )
    A.A⊆B
    B.A∩B=∅
    C.A∪B=“至少一次中靶”
    D.A与B互为对立事件
    3.(多选)将颜色分别为红、绿、白、蓝的4个小球随机分给甲、乙、丙、丁4个人,每人一个,则( )
    A.事件“甲分得红球”与事件“乙分得白球”是互斥不对立事件
    B.事件“甲分得红球”与事件“乙分得红球”是互斥不对立事件
    C.事件“甲分得绿球,乙分得蓝球”的对立事件是“丙分得白球,丁分得红球”
    D.当事件“甲分得红球”的对立事件发生时,事件“乙分得红球”发生的概率是eq \f(1,3)
    考点3 频率与概率
    [名师点睛]
    1.频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值.
    2.利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐步趋近于某一个常数,这个常数就是概率.
    [典例]
    (2023·全国Ⅰ卷)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元、50元、20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:
    甲分厂产品等级的频数分布表
    乙分厂产品等级的频数分布表
    (1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;
    (2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?
    [举一反三]
    某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
    以最高气温位于各区间的频率估计最高气温位于该区间的概率.
    (1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;
    (2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.
    考点4 互斥事件与对立事件的概率
    [名师点睛]
    求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的求和公式计算;二是间接求法,先求此事件的对立事件的概率,再用公式P(A)=1-P(eq \(A,\s\up6(-)))求出所求概率,特别是“至多”“至少”型题目,用间接求法比较简便.
    [典例]
    某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:
    (1)1张奖券的中奖概率;
    (2)1张奖券不中特等奖且不中一等奖的概率.
    [举一反三]
    经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下:
    求:(1)至多2人排队等候的概率;
    (2)至少3人排队等候的概率.
    考点5 古典概型
    [名师点睛]
    利用公式法求解古典概型问题的步骤
    [典例]
    1.(2023·昆明模拟)2021年,云南省人民政府发布《关于命名“云南省美丽县城”“云南省特色小镇”的通知》,命名16个“云南省美丽县城”和6个“云南省特色小镇”,其中这6个云南省特色小镇分别是安宁温泉小镇、腾冲银杏小镇、禄丰黑井古镇、剑川沙溪古镇、瑞丽畹町小镇、德钦梅里雪山小镇.某人计划在今年暑假期间从这6个云南特色小镇中任意选两个去旅游,则其中一个是安宁温泉小镇的概率为( )
    A.eq \f(1,3) B.eq \f(2,3) C.eq \f(1,5) D.eq \f(1,6)
    2.(2023·全国甲卷)将4个1和2个0随机排成一行,则2个0不相邻的概率为( )
    A.eq \f(1,3) B.eq \f(2,5) C.eq \f(2,3) D.eq \f(4,5)
    [举一反三]
    1.(2023·江苏百师联盟联考)将3名男生1名女生共4名同学分配到甲、乙、丙三个社区参加社会实践,每个社区至少一名同学,则恰好一名女生和一名男生分到甲社区的概率是( )
    A.eq \f(1,12) B.eq \f(1,3) C.eq \f(1,2) D.eq \f(1,6)
    2.(2023·福州模拟)“博饼”是闽南地区中秋佳节的传统民俗游戏,也是国家级非物质文化遗产的代表性项目.“博饼”的游戏规则是:参与者轮流把6颗骰子同时投进一个大瓷碗里,而后根据骰子的向上一面点数组合情况,来决定获奖等次,获奖等次分为6类,分别用中国古代科举的排名名称命名,获奖者投出的骰子组合如图所示,根据你所学的概率知识,投出“六杯红”的概率为______;投出“状元插金花”的概率为______.(不需得出具体数值)
    考点6 概率的基本性质
    [名师点睛]
    求复杂互斥事件的概率的两种方法
    (1)直接法
    (2)间接法(正难则反,特别是“至多”“至少”型题目,用间接法求解简单).
    [典例]
    某医院要派医生下乡义诊,派出医生的人数及其概率如下表所示.
    (1)求派出医生至多2个的概率;
    (2)求派出医生至少2个的概率.
    [举一反三]
    1.(2023·东营模拟)五声音阶是中国古乐的基本音阶,故有成语“五音不全”,中国古乐中的五声音阶依次为宫、商、角、徵、羽.如果从这五个音阶中任取两个音阶,排成一个两个音阶的音序,则这个音序中宫和羽至少有一个的概率为( )
    A.eq \f(1,2) B.eq \f(7,10)
    C.eq \f(9,20) D.eq \f(11,20)
    2.抛掷一枚质地均匀的骰子,事件A表示“向上的点数是奇数”,事件B表示“向上的点数不超过3”,则P(A∪B)等于( )
    A.eq \f(1,2) B.eq \f(2,3) C.eq \f(5,6) D.1
    考点7 概率与统计的综合问题
    [名师点睛]
    求解古典概型的交汇问题的步骤
    (1)将题目条件中的相关知识转化为事件;
    (2)判断事件是否为古典概型;
    (3)选用合适的方法确定样本点个数;
    (4)代入古典概型的概率公式求解.
    [典例]
    (2023·天津)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层随机抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.
    (1)应从老、中、青员工中分别抽取多少人?
    (2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.
    ①试用所给字母列举出所有可能的抽取结果;
    ②设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.
    [举一反三]
    饮用水水源的安全是保障饮用水安全的基础.同时国家提倡节约用水,全民积极维护饮用水水源安全,保障安全饮水.2021年5月13日下午,正在河南省南阳市考察调研的习近平总书记来到淅川县,先后考察了陶岔渠首枢纽工程、丹江口水库,听取南水北调中线工程建设管理运行和水源地生态保护等情况介绍.为了提高节约用水意识,为此,某校开展了“节约用水,从我做起”活动,从参赛的学生中随机选取100人的成绩作为样本,得到如图所示的频率分布直方图.
    (1)求频率分布直方图中a的值,并估计该校此次参赛学生成绩的平均分eq \x\t(x)(同一组数据用该组区间的中点值代表);
    (2)在该样本中,若采用分层随机抽样方法,从成绩低于65分的学生中随机抽取6人调查他们的答题情况,再从这6人中随机抽取3人进行深入调研,求这3人中至少有1人的成绩低于55分的概率.
    含义
    符号表示
    包含关系
    A发生导致B发生
    A⊆B
    相等关系
    B⊇A且A⊇B
    A=B
    并事件(和事件)
    A与B至少一个发生
    A∪B或A+B
    交事件(积事件)
    A与B同时发生
    A∩B或AB
    互斥(互不相容)
    A与B不能同时发生
    A∩B=∅
    互为对立
    A与B有且仅有一个发生
    A∩B=∅,A∪B=Ω
    等级
    A
    B
    C
    D
    频数
    40
    20
    20
    20
    等级
    A
    B
    C
    D
    频数
    28
    17
    34
    21
    最高气温
    [10,15)
    [15,20)
    [20,25)
    [25,30)
    [30,35)
    [35,40]
    天数
    2
    16
    36
    25
    7
    4
    排队人数
    0
    1
    2
    3
    4
    5人及5人以上
    概率
    0.1
    0.16
    0.3
    0.3
    0.1
    0.04
    人数
    0
    1
    2
    3
    4
    大于等于5
    概率
    0.1
    0.16
    0.3
    0.2
    0.2
    0.04
    员工
    项目
    A
    B
    C
    D
    E
    F
    子女教育


    ×

    ×

    继续教育
    ×
    ×

    ×


    大病医疗
    ×
    ×
    ×

    ×
    ×
    住房贷款利息


    ×
    ×


    住房租金
    ×
    ×

    ×
    ×
    ×
    赡养老人


    ×
    ×
    ×

    第59讲 随机事件的概率与古典概型
    1.样本空间和随机事件
    (1)样本点和有限样本空间
    ①样本点:随机试验E的每个可能的基本结果称为样本点,常用ω表示.
    全体样本点的集合称为试验E的样本空间,常用Ω表示.
    ②有限样本空间:如果一个随机试验有n个可能结果ω1,ω2,…,ωn,则称样本空间Ω={ω1,ω2,…,ωn}为有限样本空间.
    (2)随机事件
    ①定义:将样本空间Ω的子集称为随机事件,简称事件.
    ②表示:大写字母A,B,C,….
    ③随机事件的极端情形:必然事件、不可能事件.
    2.两个事件的关系和运算
    3.频率与概率
    (1)频率的稳定性
    一般地,随着试验次数n的增大,频率偏离概率的幅度会缩小,即事件A发生的频率fn(A)会逐渐稳定于事件A发生的概率P(A),我们称频率的这个性质为频率的稳定性.
    (2)频率稳定性的作用:可以用频率fn(A)估计概率P(A).
    4.古典概型
    (1)有限性:样本空间的样本点只有有限个;
    (2)等可能性:每个样本点发生的可能性相等.
    5.古典概型的概率公式
    一般地,设试验E是古典概型,样本空间Ω包含n个样本点,事件A包含其中的k个样本点,则定义事件A的概率P(A)=eq \f(k,n)=eq \f(nA,nΩ).
    其中,n(A)和n(Ω)分别表示事件A和样本空间Ω包含的样本点个数.
    6.概率的性质
    性质1:对任意的事件A,都有P(A)≥0;
    性质2:必然事件的概率为1,不可能事件的概率为0,即P(Ω)=1,P(∅)=0;
    性质3:如果事件A与事件B互斥,那么P(A∪B)=P(A)+P(B);
    性质4:如果事件A与事件B互为对立事件,那么P(B)=1-P(A),P(A)=1-P(B);
    性质5:如果A⊆B,那么P(A)≤P(B),由该性质可得,对于任意事件A,因为∅⊆A⊆Ω,所以0≤P(A)≤1.
    性质6:设A,B是一个随机试验中的两个事件,有P(A∪B)=P(A)+P(B)-P(A∩B).
    考点1 随机事件与样本空间
    [名师点睛]
    确定样本空间的方法
    (1)必须明确事件发生的条件.
    (2)根据题意,按一定的次序列出问题的答案.特别要注意结果出现的机会是均等的,按规律去写,要做到既不重复也不遗漏.
    [典例]
    1.在1,2,3,…,10这十个数字中,任取三个不同的数字,那么“这三个数字的和大于5”这一事件是( )
    A.必然事件 B.不可能事件
    C.随机事件 D.以上选项均有可能
    答案 A
    解析 从1,2,3,…,10这十个数字中任取三个不同的数字,那么这三个数字和的最小值为1+2+3=6,
    ∴事件“这三个数字的和大于5”一定会发生,
    ∴由必然事件的定义可以得知该事件是必然事件.
    2.一只口袋装有除颜色外,形状、大小等完全相同的2个白球,3个黑球,4个红球,从中分两次依次取两个球.
    (1)写出这个试验的样本空间;
    (2)“至少有1个白球”这一事件包含哪几个样本点?
    解 (1)这个试验的样本空间Ω={(白,白),(黑,黑),(红,红),(白,黑),(白,红),(黑,白),(红,白),(黑,红),(红,黑)}.
    (2)“至少有1个白球”这一事件包含以下5个样本点:(白,白),(白,黑),(白,红),(黑,白),(红,白).
    [举一反三]
    1.下列说法错误的是( )
    A.任一事件的概率总在[0,1]内B.不可能事件的概率一定为0
    C.必然事件的概率一定为1D.概率是随机的,在试验前不能确定
    答案 D
    解析 任一事件的概率总在[0,1]内,不可能事件的概率为0,必然事件的概率为1,概率是客观存在的,是一个确定值.
    2.袋中有大小、形状相同的红球、黑球各一个,现在有放回地随机摸3次,每次摸取一个,观察摸出球的颜色,则此随机试验的样本点个数为 ( )
    A.5 B.6 C.7 D.8
    答案 D
    解析 因为是有放回地随机摸3次,所以随机试验的样本空间为Ω={(红,红,红),(红,红,黑),(红,黑,红),(红,黑,黑),(黑,红,红),(黑,红,黑),(黑,黑,红),(黑,黑,黑)}.共8个.
    考点2 事件的关系与运算
    [名师点睛]
    1.准确把握互斥事件与对立事件的概念:(1)互斥事件是不可能同时发生的事件,但也可以同时不发生;(2)对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生.
    2.判别互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两个事件为对立事件,对立事件一定是互斥事件.
    [典例]
    1.(多选)若干个人站成排,其中不是互斥事件的是( )
    A.“甲站排头”与“乙站排头”
    B.“甲站排头”与“乙不站排尾”
    C.“甲站排头”与“乙站排尾”
    D.“甲不站排头”与“乙不站排尾”
    答案 BCD
    解析 排头只能有一人,因此“甲站排头”与“乙站排头”互斥,而B,C,D中,甲、乙站位不一定在同一位置,可以同时发生,因此它们都不互斥.故选BCD.
    2.在一次随机试验中,彼此互斥的事件A,B,C,D发生的概率分别是0.2,0.2,0.3,0.3,则下列说法正确的是( )
    A.A∪B与C是互斥事件,也是对立事件
    B.B∪C与D是互斥事件,也是对立事件
    C.A∪C与B∪D是互斥事件,但不是对立事件
    D.A与B∪C∪D是互斥事件,也是对立事件
    答案 D
    解析 A中,A∪B与C是互斥事件,但不对立,因为P(A∪B)+P(C)=0.7≠1,故A错误;
    B中,B∪C与D是互斥事件,但不对立,因为P(B∪C)+P(D)=0.8≠1,故B错误;
    C中,A∪B与C∪D是互斥事件,也是对立事件,因为P(A∪B)+P(C∪D)=1,故C错误;
    D中,A与B∪C∪D是互斥事件,也是对立事件,因为P(A)+P(B∪C∪D)=1,故D正确.
    3.(多选)口袋里装有1红,2白,3黄共6个除颜色外完全相同的小球,从中取出两个球,事件A=“取出的两个球同色”,B=“取出的两个球中至少有一个黄球”,C=“取出的两个球至少有一个白球”,D=“取出的两个球不同色”,E=“取出的两个球中至多有一个白球”.下列判断正确的是( )
    A.A与D为对立事件
    B.B与C是互斥事件
    C.C与E是对立事件
    D.P(C∪E)=1
    答案 AD
    解析 当取出的两个球为一黄一白时,B与C都发生,B不正确;当取出的两个球中恰有一个白球时,事件C与E都发生,C不正确;显然A与D是对立事件,A正确;C∪E为必然事件,P(C∪E)=1,D正确.
    [举一反三]
    1.(2023·长春模拟)口袋中装有3个红球和4个黑球,每个球编有不同的号码,现从中取出3个球,则互斥而不对立的事件是( )
    A.至少有1个红球与至少有1个黑球
    B.至少有1个红球与都是黑球
    C.至少有1个红球与至多有1个黑球
    D.恰有1个红球与恰有2个红球
    答案 D
    解析 对于A,不互斥,如取出2个红球和1个黑球,与至少有1个黑球不是互斥事件,所以A不符合题意;
    对于B,至少有1个红球与都是黑球不能同时发生,且必有其中1个发生.所以为互斥事件,且为对立事件,所以B不符合题意;
    对于C,不互斥.如取出2个红球和1个黑球,与至多有1个黑球不是互斥事件,所以C不符合题意;
    对于D,恰有1个红球与恰有2个红球不能同时发生,所以为互斥事件,但不对立,如还有3个红球.
    2.(多选)某人打靶时连续射击两次,设事件A=“只有一次中靶”,B=“两次都中靶”,则下列结论正确的是( )
    A.A⊆B
    B.A∩B=∅
    C.A∪B=“至少一次中靶”
    D.A与B互为对立事件
    答案 BC
    解析 事件A=“只有一次中靶”,B=“两次都中靶”,所以A,B是互斥但不是对立事件,所以AD选项错误,B选项正确.A∪B=“至少一次中靶”,C选项正确.
    3.(多选)将颜色分别为红、绿、白、蓝的4个小球随机分给甲、乙、丙、丁4个人,每人一个,则( )
    A.事件“甲分得红球”与事件“乙分得白球”是互斥不对立事件
    B.事件“甲分得红球”与事件“乙分得红球”是互斥不对立事件
    C.事件“甲分得绿球,乙分得蓝球”的对立事件是“丙分得白球,丁分得红球”
    D.当事件“甲分得红球”的对立事件发生时,事件“乙分得红球”发生的概率是eq \f(1,3)
    答案 BD
    解析 事件“甲分得红球”与事件“乙分得白球”可以同时发生,不是互斥事件,A错误;
    事件“甲分得红球”与事件“乙分得红球”不能同时发生,是互斥事件,除了甲分得红球或者乙分得红球以外,丙或者丁也可以分得红球,B正确;
    事件“甲分得绿球,乙分得蓝球”与事件“丙分得白球,丁分得红球”可以同时发生,不是对立事件,C错误;
    事件“甲分得红球”的对立事件是“甲没有分得红球”,因此乙、丙、丁三人中有一个人分得红球,事件“乙分得红球”发生的概率是eq \f(1,3),D正确.
    考点3 频率与概率
    [名师点睛]
    1.频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值.
    2.利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐步趋近于某一个常数,这个常数就是概率.
    [典例]
    (2023·全国Ⅰ卷)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元、50元、20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:
    甲分厂产品等级的频数分布表
    乙分厂产品等级的频数分布表
    (1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;
    (2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?
    解 (1)由试加工产品等级的频数分布表知,
    甲分厂加工出来的一件产品为A级品的概率的估计值为eq \f(40,100)=0.4;
    乙分厂加工出来的一件产品为A级品的概率的估计值为eq \f(28,100)=0.28.
    (2)由数据知甲分厂加工出来的100件产品利润的频数分布表为
    因此甲分厂加工出来的100件产品的平均利润为
    eq \f(65×40+25×20-5×20-75×20,100)=15.
    由数据知乙分厂加工出来的100件产品利润的频数分布表为
    因此乙分厂加工出来的100件产品的平均利润为
    eq \f(70×28+30×17+0×34-70×21,100)=10.
    比较甲、乙两分厂加工的产品的平均利润,厂家应选甲分厂承接加工业务.
    [举一反三]
    某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
    以最高气温位于各区间的频率估计最高气温位于该区间的概率.
    (1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;
    (2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.
    解 (1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表中数据可知,最高气温低于25的频率为eq \f(2+16+36,90)=0.6.
    所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.
    (2)当这种酸奶一天的进货量为450瓶时,
    若最高气温低于20,则Y=200×6+(450-200)×2-450×4=-100;
    若最高气温位于区间[20,25),则Y=300×6+(450-300)×2-450×4=300;
    若最高气温不低于25,
    则Y=450×(6-4)=900,
    所以利润Y的所有可能值为-100,300,900.
    Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为eq \f(36+25+7+4,90)=0.8.
    因此Y大于零的概率的估计值为0.8.
    考点4 互斥事件与对立事件的概率
    [名师点睛]
    求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的求和公式计算;二是间接求法,先求此事件的对立事件的概率,再用公式P(A)=1-P(eq \(A,\s\up6(-)))求出所求概率,特别是“至多”“至少”型题目,用间接求法比较简便.
    [典例]
    某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:
    (1)1张奖券的中奖概率;
    (2)1张奖券不中特等奖且不中一等奖的概率.
    解 (1)设“1张奖券中奖”为事件M,则M=A∪B∪C.
    ∵A,B,C两两互斥,∴P(M)=P(A∪B∪C)=P(A)+P(B)+P(C)=eq \f(1+10+50,1 000)=eq \f(61,1 000).
    故1张奖券中奖的概率为eq \f(61,1 000).
    (2)设“1张奖券既不中特等奖也不中一等奖”为事件N,则事件N与事件“1张奖券中特等奖或中一等奖”为对立事件,
    ∴P(N)=1-P(A∪B)=1-[P(A)+P(B)]=1-eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,1 000)+\f(1,100)))=eq \f(989,1 000).
    故1张奖券既不中特等奖也不中一等奖的概率为eq \f(989,1 000).
    [举一反三]
    经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下:
    求:(1)至多2人排队等候的概率;
    (2)至少3人排队等候的概率.
    解 记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A,B,C,D,E,F彼此互斥.
    (1)记“至多2人排队等候”为事件G,则G=A∪B∪C,
    所以P(G)=P(A∪B∪C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.
    (2)法一 记“至少3人排队等候”为事件H,
    则H=D∪E∪F,
    所以P(H)=P(D∪E∪F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.
    法二 记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.
    考点5 古典概型
    [名师点睛]
    利用公式法求解古典概型问题的步骤
    [典例]
    1.(2023·昆明模拟)2021年,云南省人民政府发布《关于命名“云南省美丽县城”“云南省特色小镇”的通知》,命名16个“云南省美丽县城”和6个“云南省特色小镇”,其中这6个云南省特色小镇分别是安宁温泉小镇、腾冲银杏小镇、禄丰黑井古镇、剑川沙溪古镇、瑞丽畹町小镇、德钦梅里雪山小镇.某人计划在今年暑假期间从这6个云南特色小镇中任意选两个去旅游,则其中一个是安宁温泉小镇的概率为( )
    A.eq \f(1,3) B.eq \f(2,3) C.eq \f(1,5) D.eq \f(1,6)
    答案 A
    解析 6个云南省特色小镇分别为a,b,c,d,e,f,其中a为安宁温泉小镇,则6个云南特色小镇中任意选两个的样本点有(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b,f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f)共15个,其中一个是安宁温泉小镇有(a,b),(a,c),(a,d),(a,e),(a,f)共5个,所以要求的概率为P=eq \f(5,15)=eq \f(1,3).
    2.(2023·全国甲卷)将4个1和2个0随机排成一行,则2个0不相邻的概率为( )
    A.eq \f(1,3) B.eq \f(2,5) C.eq \f(2,3) D.eq \f(4,5)
    答案 C
    解析 方法一 (将4个1和2个0视为完全不同的元素)4个1分别设为1A,1B,1C,1D,2个0分别设为0A,0B,将4个1和2个0随机排成一行有Aeq \\al(6,6)种排法,将1A,1B,1C,1D,排成一行有Aeq \\al(4,4)种排法,再将0A,0B插空有Aeq \\al(2,5)种排法,所以2个0不相邻的概率P=eq \f(A\\al(4,4)A\\al(2,5),A\\al(6,6))=eq \f(2,3).
    方法二 (含有相同元素的排列)将4个1和2个0安排在6个位置,则选择2个位置安排0,共有Ceq \\al(2,6)种排法;将4个1排成一行,把2个0插空,即在5个位置中选2个位置安排0,共有Ceq \\al(2,5)种排法.所以2个0不相邻的概率P=eq \f(C\\al(2,5),C\\al(2,6))=eq \f(2,3).
    [举一反三]
    1.(2023·江苏百师联盟联考)将3名男生1名女生共4名同学分配到甲、乙、丙三个社区参加社会实践,每个社区至少一名同学,则恰好一名女生和一名男生分到甲社区的概率是( )
    A.eq \f(1,12) B.eq \f(1,3) C.eq \f(1,2) D.eq \f(1,6)
    答案 D
    解析 分配方案的总数为Ceq \\al(2,4)Aeq \\al(3,3),恰好一名女生和一名男生分到甲社区的分法有Ceq \\al(1,3)Aeq \\al(2,2),恰好一名女生和一名男生分到甲社区的概率是P=eq \f(C\\al(1,3)A\\al(2,2),C\\al(2,4)A\\al(3,3))=eq \f(1,6).
    2.(2023·福州模拟)“博饼”是闽南地区中秋佳节的传统民俗游戏,也是国家级非物质文化遗产的代表性项目.“博饼”的游戏规则是:参与者轮流把6颗骰子同时投进一个大瓷碗里,而后根据骰子的向上一面点数组合情况,来决定获奖等次,获奖等次分为6类,分别用中国古代科举的排名名称命名,获奖者投出的骰子组合如图所示,根据你所学的概率知识,投出“六杯红”的概率为______;投出“状元插金花”的概率为______.(不需得出具体数值)
    答案 eq \f(1,66) eq \f(5,2×65)
    解析 依题意,6个骰子同时投掷一次,样本点总数为66.
    其中,投出“六杯红”的样本点数为1;
    投出“状元插金花”的样本点数为Ceq \\al(2,6)=15.
    故投出“六杯红”的概率为eq \f(1,66);投出“状元插金花”的概率为eq \f(15,66)=eq \f(5,2×65).
    考点6 概率的基本性质
    [名师点睛]
    求复杂互斥事件的概率的两种方法
    (1)直接法
    (2)间接法(正难则反,特别是“至多”“至少”型题目,用间接法求解简单).
    [典例]
    某医院要派医生下乡义诊,派出医生的人数及其概率如下表所示.
    (1)求派出医生至多2个的概率;
    (2)求派出医生至少2个的概率.
    解 设“不派出医生”为事件A,“派出1名医生”为事件B,“派出2名医生”为事件C,“派出3名医生”为事件D,“派出4名医生”为事件E,“派出5名及5名以上医生”为事件F,事件A,B,C,D,E,F彼此互斥,且P(A)=0.1,P(B)=0.16,P(C)=0.3,P(D)=0.2,P(E)=0.2,P(F)=0.04.
    (1)“派出医生至多2个”的概率为
    P(A∪B∪C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.
    (2)方法一 “派出医生至少2人”的概率为
    P(C∪D∪E∪F)=P(C)+P(D)+P(E)+P(F)=0.3+0.2+0.2+0.04=0.74.
    方法二 “派出医生至少2个”的概率为
    1-P(A∪B)=1-0.1-0.16=0.74.
    [举一反三]
    1.(2023·东营模拟)五声音阶是中国古乐的基本音阶,故有成语“五音不全”,中国古乐中的五声音阶依次为宫、商、角、徵、羽.如果从这五个音阶中任取两个音阶,排成一个两个音阶的音序,则这个音序中宫和羽至少有一个的概率为( )
    A.eq \f(1,2) B.eq \f(7,10)
    C.eq \f(9,20) D.eq \f(11,20)
    答案 B
    解析 设从这五个音阶中任取两个音阶,排成一个两个音阶的音序,这个音序中宫和羽至少有一个为事件A,则eq \x\t(A)表示这个音序中不含宫和羽这两个音序,
    ∴P(A)=1-P(eq \x\t(A))=1-eq \f(A\\al(2,3),A\\al(2,5))=1-eq \f(3×2,5×4)=eq \f(7,10).
    2.抛掷一枚质地均匀的骰子,事件A表示“向上的点数是奇数”,事件B表示“向上的点数不超过3”,则P(A∪B)等于( )
    A.eq \f(1,2) B.eq \f(2,3) C.eq \f(5,6) D.1
    答案 B
    解析 法一 A包含向上点数是1,3,5的情况,B包含向上的点数是1,2,3的情况,
    所以A∪B包含了向上点数是1,2,3,5的情况,故P(A∪B)=eq \f(4,6)=eq \f(2,3).
    法二 P(A∪B)=P(A)+P(B)-P(AB)=eq \f(1,2)+eq \f(1,2)-eq \f(2,6)=1-eq \f(1,3)=eq \f(2,3).
    考点7 概率与统计的综合问题
    [名师点睛]
    求解古典概型的交汇问题的步骤
    (1)将题目条件中的相关知识转化为事件;
    (2)判断事件是否为古典概型;
    (3)选用合适的方法确定样本点个数;
    (4)代入古典概型的概率公式求解.
    [典例]
    (2023·天津)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层随机抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.
    (1)应从老、中、青员工中分别抽取多少人?
    (2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.
    ①试用所给字母列举出所有可能的抽取结果;
    ②设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.
    解 (1)由已知得老、中、青员工人数之比为6∶9∶10,由于采用分层随机抽样的方法从中抽取25位员工,
    因此应从老、中、青员工中分别抽取6人、9人、10人.
    (2)①从已知的6人中随机抽取2人的样本空间为{(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F)},共15个样本点.
    ②由表格知,符合题意的有(A,B),(A,D),(A,E),(A,F),(B,D),(B,E),(B,F),(C,E),(C,F),(D,F),(E,F),共11个样本点.所以事件M发生的概率P(M)=eq \f(11,15).
    [举一反三]
    饮用水水源的安全是保障饮用水安全的基础.同时国家提倡节约用水,全民积极维护饮用水水源安全,保障安全饮水.2021年5月13日下午,正在河南省南阳市考察调研的习近平总书记来到淅川县,先后考察了陶岔渠首枢纽工程、丹江口水库,听取南水北调中线工程建设管理运行和水源地生态保护等情况介绍.为了提高节约用水意识,为此,某校开展了“节约用水,从我做起”活动,从参赛的学生中随机选取100人的成绩作为样本,得到如图所示的频率分布直方图.
    (1)求频率分布直方图中a的值,并估计该校此次参赛学生成绩的平均分eq \x\t(x)(同一组数据用该组区间的中点值代表);
    (2)在该样本中,若采用分层随机抽样方法,从成绩低于65分的学生中随机抽取6人调查他们的答题情况,再从这6人中随机抽取3人进行深入调研,求这3人中至少有1人的成绩低于55分的概率.
    解 (1)根据频率分布直方图得到
    (0.005+0.025×2+0.01+a)×10=1,
    解得a=0.035.
    这组样本数据的平均数为50×0.05+60×0.25+70×0.35+80×0.25+90×0.1=71,
    所以eq \x\t(x)=71.
    (2)根据频率分布直方图得到,成绩在[45,55),[55,65)内的频率分别为0.05,0.25,所以采用分层随机抽样的方法从样本中抽取的6人,
    成绩在[45,55)内的有1人,记为X,
    成绩在[55,65)内的有5人,分别记为a,b,c,d,e,
    从这6人中随机抽取3人,所有可能的结果为Xab,Xac,Xad,Xae,Xbc,Xbd,Xbe,Xcd,Xce,Xde,abc,abd,abe,acd,ace,ade,bcd,bce,bde,cde,共20种.
    这3人中至少有1人的成绩在[45,55)内的有Xab,Xac,Xad,Xae,Xbc,Xbd,Xbe,Xcd,Xce,Xde,共10种.所以这3人中至少有1人的成绩低于55分的概率为eq \f(10,20)=eq \f(1,2).
    含义
    符号表示
    包含关系
    A发生导致B发生
    A⊆B
    相等关系
    B⊇A且A⊇B
    A=B
    并事件(和事件)
    A与B至少一个发生
    A∪B或A+B
    交事件(积事件)
    A与B同时发生
    A∩B或AB
    互斥(互不相容)
    A与B不能同时发生
    A∩B=∅
    互为对立
    A与B有且仅有一个发生
    A∩B=∅,A∪B=Ω
    等级
    A
    B
    C
    D
    频数
    40
    20
    20
    20
    等级
    A
    B
    C
    D
    频数
    28
    17
    34
    21
    利润
    65
    25
    -5
    -75
    频数
    40
    20
    20
    20
    利润
    70
    30
    0
    -70
    频数
    28
    17
    34
    21
    最高气温
    [10,15)
    [15,20)
    [20,25)
    [25,30)
    [30,35)
    [35,40]
    天数
    2
    16
    36
    25
    7
    4
    排队人数
    0
    1
    2
    3
    4
    5人及5人以上
    概率
    0.1
    0.16
    0.3
    0.3
    0.1
    0.04
    人数
    0
    1
    2
    3
    4
    大于等于5
    概率
    0.1
    0.16
    0.3
    0.2
    0.2
    0.04
    员工
    项目
    A
    B
    C
    D
    E
    F
    子女教育


    ×

    ×

    继续教育
    ×
    ×

    ×


    大病医疗
    ×
    ×
    ×

    ×
    ×
    住房贷款利息


    ×
    ×


    住房租金
    ×
    ×

    ×
    ×
    ×
    赡养老人


    ×
    ×
    ×

    相关试卷

    高考数学一轮复习考点探究与题型突破第53讲抛物线(原卷版+解析):

    这是一份高考数学一轮复习考点探究与题型突破第53讲抛物线(原卷版+解析),共15页。试卷主要包含了抛物线的概念,抛物线的标准方程和简单几何性质等内容,欢迎下载使用。

    高考数学一轮复习考点探究与题型突破第52讲双曲线(原卷版+解析):

    这是一份高考数学一轮复习考点探究与题型突破第52讲双曲线(原卷版+解析),共15页。试卷主要包含了双曲线的定义,双曲线的标准方程和简单几何性质等内容,欢迎下载使用。

    高考数学一轮复习考点探究与题型突破第48讲圆的方程(原卷版+解析):

    这是一份高考数学一轮复习考点探究与题型突破第48讲圆的方程(原卷版+解析),共14页。试卷主要包含了圆的定义和圆的方程等内容,欢迎下载使用。

    英语朗读宝
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map