![高一数学常考点微专题提分精练(人教A版必修第一册)微专题18函数的应用(原卷版+解析)第1页](http://img-preview.51jiaoxi.com/3/3/15922635/0-1719835047150/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![高一数学常考点微专题提分精练(人教A版必修第一册)微专题18函数的应用(原卷版+解析)第2页](http://img-preview.51jiaoxi.com/3/3/15922635/0-1719835047197/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![高一数学常考点微专题提分精练(人教A版必修第一册)微专题18函数的应用(原卷版+解析)第3页](http://img-preview.51jiaoxi.com/3/3/15922635/0-1719835047222/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:高一数学常考点微专题提分精练(人教A版必修第一册)(原卷版+解析)
高一数学常考点微专题提分精练(人教A版必修第一册)微专题18函数的应用(原卷版+解析)
展开
这是一份高一数学常考点微专题提分精练(人教A版必修第一册)微专题18函数的应用(原卷版+解析),共55页。
知识点一、几种常见的函数模型
1、一次函数模型:(,为常数,)
2、二次函数模型:(为常数,)
3、指数函数模型:(为常数,,且)
4、对数函数模型:(为常数,,且)
5、幂函数模型:(为常数,)
6、分段函数模型:
知识点二、解答应用问题的基本思想和步骤
1、解应用题的基本思想
2、解答函数应用题的基本步骤
求解函数应用题时一般按以下几步进行:
第一步:审题
弄清题意,分清条件和结论,理顺数量关系,初步选择模型.
第二步:建模
在细心阅读与深入理解题意的基础上,引进数学符号,将问题的非数学语言合理转化为数学语言,然后根据题意,列出数量关系,建立函数模型.这时,要注意函数的定义域应符合实际问题的要求.
第三步:求模
运用数学方法及函数知识进行推理、运算,求解数学模型,得出结果.
第四步:还原
把数学结果转译成实际问题作出解答,对于解出的结果要代入原问题中进行检验、评判,使其符合实际背景.
上述四步可概括为以下流程:
实际问题(文字语言)数学问题(数量关系与函数模型)建模(数学语言)求模(求解数学问题)反馈(还原成实际问题的解答).
【题型归纳目录】
题型一:几类不同增长的函数模型
题型二:二次函数模型
题型三:分段函数模型
题型四:分式型函数模型
题型五:对数函数模型
题型六:幂函数模型
题型七:利用给定函数模型解决实际问题
【典型例题】
题型一:几类不同增长的函数模型
例1.(2023·陕西·榆林市第十中学高一期中)某地西红柿从2月1日起开始上市.通过市场调查,得到西红柿种植成本单位:元与上市时间(单位:天)的数据如下表:
由表知,体现与数据关系的最佳函数模型是( )
A.B.
C.D.
例2.(2023·全国·高一课时练习)已知三个变量,,随变量的变化数据如下表:
则反映,,随x变化情况拟合较好的一组函数模型是( )
A.,,B.,,
C.,,D.,,
例3.(2023·全国·高一课时练习)下列函数中,当很大时,随的增大而增大速度最快的是( )
A.B.C.D.
变式1.(2023·全国·高一课时练习)下面对函数,与在区间上的衰减情况的叙述正确的是( )
A.的衰减速度逐渐变慢,的衰减速度逐渐变快,的衰减速度逐渐变慢
B.的衰减速度逐渐变快,的衰减速度逐渐变慢,的衰减速度逐渐变快
C.的衰减速度逐渐变慢,的衰减速度逐渐变慢,的衰减速度逐渐变慢
D.的衰减速度逐渐变快,的衰减速度逐渐变快,的衰减速度逐渐变快
变式2.(2023·全国·高一课时练习)在一次数学实验中,采集到如下一组数据:
则,的函数关系与下列各类函数最接近的是(其中,为待定系数)( )
A.B.C.D.
题型二:二次函数模型
例4.(2023·上海市莘庄中学高一阶段练习)行驶中的汽车,在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离,在某种路面上,某种型号汽车的刹车距离与汽车的车速满足下列关系:(为常数,且),做了两次刹车试验,有关试验数据如图所示,其中.
(1)求的值;
(2)要使刹车距离不超过,则行驶的最大速度是多少?
例5.(2023·浙江省永嘉县碧莲中学高一期中)某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需要增加投入100元,已知总收益(单位:元)函数为,其中是仪器的产量(单位:台)
(1)将利润(单位:元)表示为产量的函数(利润=总收益-总成本);
(2)当产量为多少时,公司所获利润最大?最大利润是多少?
例6.(2023·江苏·常熟中学高一阶段练习)某景区要建一个游乐场(如图所示),其中、分别靠现有墙、(墙长为27米,墙足够长),其余用篱笆围成.篱笆将游乐场隔成等腰直角和长方形两部分,并在三处各留2米宽的大门,已知篱笆总长为54米,设长为米,面积为平方米.
(1)求与的函数关系式及的取值范围;
(2)当多长时,游乐场的面积为320平方米?
变式3.(2023·广东汕头·高一期末)为节约能源,倡导绿色环保,某主题公园有60辆电动观光车供租赁使用,管理这些电动观光车的费用是每日120元.根据经验,若每辆电动观光车的日租金不超过5元,则电动观光车可以全部租出;若超过5元,则每超过1元,租不出的电动观光车就增加2辆.为了便于结算,每辆电动观光车的日租金x(元)只取整数,并且要求出租电动观光车一日的收入必须高于这一日的管理费用,用y(元)表示出租电动观光车的日净收入(即一日出租电动观光车的总收入减去管理费用后的所得).
(1)求函数;
(2)试问当每辆电动观光车的日租金为多少元时,才能使一日的净收入最多?
题型三:分段函数模型
例7.(2023·云南师大附中高一期中)第二十二届世界杯足球赛将于2022年11月20日至12月18日在卡塔尔举行,这是世界杯足球赛首次在中东国家举行.本届世界杯很可能是“绝代双骄”梅西、C罗的绝唱,狂傲的青春也将被时间揽入温柔的怀抱.即将说再见时,才发现,那属于一代人的绝世风华,不会随年华逝去,只会在年华的飘零中不经意的想起.世界杯,是球员们圆梦的舞台,是球迷们情怀的归宿,也是商人们角逐的竞技场.某足球运动装备生产企业,2022年的固定成本为1000万元,每生产千件装备,需另投入资金(万元).经计算与市场评估得,调查发现,当生产10千件装备时需另投入的资金万元.每千件装备的市场售价为300万元,从市场调查来看,2022年最多能售出150千件.
(1)写出2022年利润(万元)关于年产量(千件)的函数;(利润=销售总额-总成本)
(2)求当2022年产量为多少千件时,该企业所获得的利润最大?最大利润是多少?
例8.(2023·江苏省灌南高级中学高一阶段练习)某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数(其中x是仪器的月产量).
(1)将利润y表示为月产量x的函数;
(2)当月产量x为何值时,平均每件产品所获利润最大?每件产品的最大利润为多少元?
例9.(2023·江苏省灌云高级中学高一期末)我国某企业自主研发了一款具有自主知识产权的平板电脑,并从2021年起全面发售.经测算,生产该平板电脑每年需投入固定成本1350万元,每生产 (千台)电脑需要另投成本万元,且另外每台平板电脑售价为0.6万元,假设每年生产的平板电脑能够全部售出.已知2021年共售出10000台平板电脑,企业获得年利润为1650万元.
(1)求该企业获得年利润(万元)关于年产量 (千台)的函数关系式;
(2)当年产量为多少千台时,该企业所获年利润最大?并求最大年利润.
变式4.(2023·云南·高一阶段练习)为了解决受新冠疫情影响,文具用品滞销的问题,文具店老板利用某直播平台卖货,销售的文具主要有圆珠笔、笔记本、文具盒、钢笔,价格依次为2元/支、10元/本、14元/个、25元/支.为了增加销量,老板决定对这4种文具进行1次优惠大促销:优惠活动①,提供满50元减4元的优惠券,优惠券可叠加;优惠活动②,提供买1套文具(包括1支圆珠笔、1本笔记本、1个文具盒、1支钢笔)减x(,且)元的优惠券,优惠券可叠加,每位顾客只能参加其中一种优惠活动,每位顾客在网上支付订单成功后,文具店老板都会得到支付款的80%.已知甲顾客购买了1套文具,选择优惠活动②,并且文具店老板从甲顾客的支付款中得到了36元.
(1)求x的值;
(2)已知乙、丙两位顺客计划在该文具店购买圆珠笔、笔记本、文具盒、钢笔这4种文具,计划购买的圆珠笔的数量多于笔记本的数量的2倍,笔记本的数量多于文具盒的数量,文具盒的数量多于钢笔的数量,钢笔数量的3倍多于圆珠笔的数量,当乙、丙购买的文具总数最少时,请你给乙、丙设计1种最省钱的购买方案,并求乙、丙花费的总费用的最小值.
题型四:分式型函数模型
例10.(2023·江苏省新海高级中学高一期中)甲乙两地相距,汽车从甲地以的速度匀速行驶到乙地.已知汽车每小时的运输成本由固定成本和可变成本组成,固定成本为元,可变成本与速度的平方成正比,比例系数为.已知当速度为进行行驶时,每小时运输的可变成本的36元,设全程运输成本元.
(1)求全程运输成本关于速度的函数关系式;
(2)为使全程运输成本最小,汽车应以多大速度行驶?
例11.(2023·湖南·长沙一中高一阶段练习)某品牌电动汽车在某路段以每小时x千米的速度匀速行驶240千米.该路段限速(单位:千米/时).充电费为1.5元/千瓦时,电动汽车行驶时每小时耗电千瓦时,轮胎磨损费为元/千米,道路通行费为0.2元/千米.
(1)求这次行车总费用y关于x的表达式;
(2)当行车速度x为何值时,这次行车的总费用最低,并求出最低费用的值.
例12.(2023·上海市第二中学高一阶段练习)某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900m²的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m,三块矩形区域的前、后与内墙各保留1m宽的通道,左、右两块矩形区域分别与相邻的左、右内墙保留3m宽的通道,如图,设矩形温室的室内长为(m),三块种植植物的矩形区域的总面积为().
(1)写出与之间的关系式,并写出的取值范围∶
(2)若要求矩形区域总面积不少于656m²,求室内长的取值范围.
变式5.(2023·宁夏·石嘴山市第一中学高一阶段练习)近日,随着新冠肺炎疫情在多地零星散发,为最大程度减少人员流动,减少疫情发生的可能性,宁夏政府积极制定政策,决定政企联动,鼓励企业在国庆期间留住员工在本市过节并加班追产.为此,该地政府决定为当地某A企业国庆节期间加班追产提供(万元)的专项补贴.A企业在收到政府x(万元)补贴后,产量将增加到(万件).同时A企业生产t(万件)产品需要投入成本为(万元),并以每件元的价格将其生产的产品全部售出.注:收益=销售金额+政府专项补贴-成本
(1)求企业国庆节期间加班追产所获收益(万元)关于政府补贴(万元)的函数关系式;
(2)当政府的专项补贴为多少万元时,A企业国庆节期间加班追产所获收益最大?
题型五:对数函数模型
例13.(2023·全国·高一单元测试)某同学对航天知识有着浓厚的兴趣,通过查阅资料,他发现在不考虑气动阻力和地球引力等造成的影响时,火箭是目前唯一能使物体达到宇宙速度,克服或摆脱地球引力,进入宇宙空间的运载工具.早在1903年齐奥尔科夫斯基就推导出火箭的最大理想速度公式:,被称为齐奥尔科夫斯基公式,其中为喷流相对火箭的速度,和分别是火箭的初始质量和发动机熄火(推进剂用完)时的质量,被称为火箭的质量比.
(1)某火箭的初始质量为160吨,喷流相对火箭的速度为2千米/秒,发动机熄火时的火箭质量为40吨,求该火箭的最大理想速度(保留2位有效数字);
(2)根据现在的科学水平,通常火箭的质量比不超过10.如果喷流相对火箭的速度为2千米/秒,请判断该火箭的最大理想速度能否超过第一宇宙速度7.9千米/秒,并说明理由.
(参考数据:)
例14.(2023·全国·高一课时练习)学校鼓励学生课余时间积极参加体育锻炼,每天能用于锻炼的课余时间有90分钟,现需要制定一个课余锻炼考核评分制度,建立一个每天得分与当天锻炼时间(单位:分)的函数关系,要求及图示如下:(1)函数是区间上的增函数;(2)每天运动时间为0分钟时,当天得分为0分;(3)每天运动时间为30分钟时,当天得分为3分;(4)每天最多得分不超过6分.现有三个函数模型①,
②,③供选择.
(1)请你从中选择一个合适的函数模型并说明理由,再根据所给信息求出函数的解析式;
(2)求每天得分不少于4.5分,至少需要锻炼多少分钟.(注:,结果保留整数)
例15.(2023·云南玉溪·高一期末)某集团公司为鼓励下属企业创业,拟对年产值在50万元到500万元的新增小微企业进行奖励,奖励方案遵循以下原则:奖金(单位:万元)随年产值(单位:万元)的增加而增加,但奖金不低于7万元,且不超过年产值的.
(1)若某下属企业年产值100万元,核定可得9万元奖金.试分析函数模型(为常数)是否为符合集团的奖励原则,并说明原因;
(2)设,若函数模型符合奖励原则,试求的取值范围.参考数据:.
变式6.(2023·全国·高一课时练习)近年来,我国在航天领域取得了巨大成就,得益于我国先进的运载火箭技术.据了解,在不考虑空气阻力和地球引力的理想状态下,可以用公式计算火箭的最大速度v(单位:m/s).其中(单位m/s)是喷流相对速度,m(单位:kg)是火箭(除推进剂外)的质量,M(单位:kg)是推进剂与火箭质量的总和,称为“总质比”,已知A型火箭的喷流相对速度为2000m/s.
参考数据:,.
(1)当总质比为230时,利用给出的参考数据求A型火箭的最大速度;
(2)经过材料更新和技术改进后,A型火箭的喷流相对速度提高到了原来的1.5倍,总质比变为原来的,若要使火箭的最大速度增加500 m/s,记此时在材料更新和技术改进前的总质比为T,求不小于T的最小整数?
变式7.(2023·吉林·长春市第二中学高一期末)某新型企业为获得更大利润,须不断加大投资,若预计年利润低于10%时,则该企业就考虑转型,下表显示的是某企业几年来利润y(百万元)与年投资成本x(百万元)变化的一组数据:
给出以下3个函数模型:①;②(,且);③(,且).
(1)选择一个恰当的函数模型来描述x,y之间的关系,并求出其解析式;
(2)试判断该企业年利润不低于6百万元时,该企业是否要考虑转型.
题型六:幂函数模型
例16.(2023·全国·高一专题练习)自2014年9月25日起,三峡大坝旅游景点对中国游客(含港、澳、台同胞、海外侨胞)施行门票免费,去三峡大坝旅游的游客人数增长越来越快,经统计发现2017年三峡大坝游客总量约为200万人,2018年约为240万人,2019年约为288万人,三峡大坝的年游客人数y与年份代码x(记2017年的年份代码为,2018年年份代码为,依此类推)有两个函数模型与可供选择.
(1)试判断哪个函数模型更合适(不需计算,简述理由即可),并求出该模型的函数解析式;
(2)问大约在哪一年,三峡大坝旅客年游览人数约是2018年的2倍.(参考数据:,,,)
例17.(2023·广东珠海·高一期末)果园A占地约3000亩,拟选用果树B进行种植,在相同种植条件下,果树B每亩最多可种植40棵,种植成本(万元)与果树数量(百棵)之间的关系如下表所示.
(1)根据以上表格中的数据判断:与哪一个更适合作为与的函数模型;
(2)已知该果园的年利润(万元)与的关系为,则果树数量为多少时年利润最大?
例18.(2023·全国·高一专题练习)某企业生产,两种产品,根据市场调查和预测,产品的利润(万元)与投资额(万元)成正比,其关系如图(1)所示;产品的利润(万元)与投资额(万元)的算术平方根成正比,其关系如图(2)所示.
(1)分别将,两种产品的利润表示为投资额的函数;
(2)该企业已筹集到10万元资金,并全部投入,两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润?其最大利润约为多少万元(精确到1万元)?
变式8.(2023·福建漳州·高一期末)2021年10月26日下午,习近平总书记参观国家“十三五”科技成就展强调,坚定创新自信紧抓创新机遇,加快实现高水平科技自立自强.面向人民生命健康,重点展示一体化全身正电子发射磁共振成像装备,在红色“健康中国”四个大字衬托下,更显科技创新为人民健康“保驾护航”的意义.为促进科技创新,某医学影像设备设计公司决定将在2022年对研发新产品团队进行奖励,奖励方案如下:奖金(单位:万元)随收益(单位:万元)的增加而增加,且奖金不超过90万元,同时奖金不超过收益的,预计收益.
(1)分别判断以下三个函数模型:,能否符合公司奖励方案的要求,并说明理由;(参考数据:)
(2)已知函数模型符合公司奖励方案的要求,求实数的取值范围.
题型七:利用给定函数模型解决实际问题
例19.(2023·浙江省衢州第三中学高一阶段练习)今年的新冠肺炎疫情是21世纪以来规模最大的突发公共卫生事件,疫情早期,武汉成为疫情重灾区,据了解,为了最大限度保障人民群众的生命安全,现需要按照要求建造隔离病房和药物仓库.已知建造隔离病房的所有费用(万元)和病房与药物仓库的距离(千米)的关系为:.若距离为1千米时,隔离病房建造费用为100万元.为了方便,隔离病房与药物仓库之间还需修建一条道路,已知购置修路设备需5万元,铺设路面每公里成本为6万元,设为建造病房与修路费用之和.
(1)求的表达式;
(2)当隔离病房与药物仓库距离多远时,可使得总费用最小?并求出最小值.
例20.(2023·辽宁·沈阳市辽中区第二高级中学高一阶段练习)某种商品原来每件售价为25元,年销售8万件.
(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?
(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x元,公司拟投入万元作为技改费用,投入万元作为宣传费用.试问:当该商品明年的销售量a至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时每件商品的定价.
例21.(2023·黑龙江·哈师大附中高一阶段练习)前一阶段,随着新冠肺炎疫情在多地零星散发,一些城市陆续发出“十一期间非必要不返乡”的倡议.为最大程度减少人员流动,减少疫情发生的可能性,某地政府积极制定政策,决定政企联动,鼓励企业在十一期间留住员工在本市过节并加班追产.为此,该地政府决定为当地企业十一期间加班追产提供(万元)的专项补贴.企业在收到政府(万元)补贴后,产量将增加到(万件).同时企业生产(万件)产品需要投入成本为(万元),并以每件元的价格将其生产的产品全部售出.注:收益=销售金额+政府专项补贴-成本
(1)求企业十一期间加班追产所获收益(万元)关于政府补贴(万元)的函数关系式;
(2)当政府的专项补贴为多少万元时,企业十一期间加班追产所获收益最大?
变式9.(2023·山东省青岛第五十八中学高一期中)2022年第12号强台风“梅花”9月8日自在西北太平洋洋面生成,至9月16日减弱为温带气旋停止编号,共历时8天,期间4次登录我国东部沿海。9月14日20时30分前后,在我国浙江省舟山普陀沿海首次登陆,登陆时中心附近最大风力14级,9月16日0时左右在山东省青岛市崂山区沿海第三次登陆,台风过境时带来的狂风暴雨天气,造成了人民生命、财产的巨大损失,受灾民众不惧困难,众志成城,积极开展抗灾、救灾,守护自己的美丽家园。某地受其影响普降暴雨,一大型堤坝发生了渗水现象,当发现时已有的坝面渗水,经测算,坝面每平方米发生渗水现象的直接经济损失约为300元,且渗水面积以每天的速度扩散.当地有关部门在发现的同时立即组织人员抢修渗水坝面,假定每位抢修人员平均每天可抢修渗水面积,该部门需支出服装补贴费为每人600元,劳务费及耗材费为每人每天300元.若安排x名人员参与抢修,需要k天完成抢修工作.
(1)写出k关于x的函数关系式;
(2)应安排多少名人员参与抢修,才能使总损失最小.(总损失=因渗水造成的直接损失+部门的各项支出费用)
变式10.(2023·宁夏六盘山高级中学高一阶段练习)某小型服装厂生产一种风衣,日销货量件()与货价p元/件之间的关系为,生产件所需成本为元.
(1)若该厂某日的销货量是30件,求该厂当日的获利是多少元?
(2)若该厂日获利不少于1300元,求该厂日产量的取值范围.
【过关测试】
一、单选题
1.(2023·浙江师范大学附属中学高一期中)在流行病学中,每名感染者平均可传染的人数叫做基本传染数.当基本传染数高于1时,每个感染者平均会感染一个以上的人,从而导致感染者人数急剧增长.当基本传染数低于1时,疫情才可能逐渐消散.而广泛接种疫苗是降低基本传染数的有效途径.假设某种传染病的基本传染数为,1个感染者平均会接触到个新人,这人中有个人接种过疫苗(称为接种率),那么1个感染者可传染的新感染人数为.已知某病毒在某地的基本传染数,为了使1个感染者可传染的新感染人数不超过1,该地疫苗的接种率至少为( )
A.B.C.D.
2.(2023·云南·高一阶段练习)某农家院有客房 20 间,日常每间客房日租金为 100 元,每天都客满.该农家院欲重新装修提高档次,并提高租金,经市场调研,每间客房日租金每增加10元,每天客房的出租间数就会减少1,则该农家院重新装修后,每天客房的租金总收入最高为( )
A.2250 元B.2300 元C.2350 元D.2400 元
3.(2023·甘肃·天水市第一中学高一开学考试)一件工艺品的进价为元,标价元出售,每天可售出件,根据销售统计,一件工艺品每降价元,则每天可多售出件,要使每天获得的利润最大,则每件需降价( )
A.元B.元C.元D.元
4.(2023·四川省德阳中学校高一阶段练习)我们通常以分贝为单位来表示声音大小的等级,分贝为安静环境,超过50分贝将对人体有影响,90分贝以上的环境会严重影响听力且会引起神经衰弱等疾病.如果强度为的声音对应的分贝数为,那么满足:.若在地铁中多人外放电子设备加上行车噪音,车厢内的声音的分贝能达到,则的声音与的声音强度之比为( )
A.40B.100C.40000D.10000
5.(2023·全国·高一单元测试)2004年中国探月工程正式立项,从嫦娥一号升空,到嫦娥五号携月壤返回,中国人一步一步将“上九天揽月”的神话变为现实.月球距离地球约38万千米有人说,在理想状态下,若将一张厚度约为0.1毫米的纸对折n次,其厚度就可以超过月球距离地球的距离.那么至少对折的次数n是(参考数据:,)( )
A.40B.41C.42D.43
6.(2023·全国·高一课时练习)已知函数,,,则下列关于这三个函数的描述中,正确的是( )
A.在上,随着的逐渐增大,增长速度越来越快于
B.在上,随着的逐渐增大,增长速度越来越快于
C.当时,的增长速度一直快于
D.当时,
7.(2023·全国·高一单元测试)春天是一个美丽、神奇,充满希望的季节,我们每个人都应当保持像春天一样朝气蓬勃的生命力,去创造属于我们自己的美好生活.随着2022年春天的深入,某池塘中的荷花枝繁叶茂,已知每经过一天的生长,荷叶覆盖水面面积都是前一天的倍,若荷叶20天可以完全长满池塘水面,则当荷叶刚好覆盖水面面积一半时,荷叶大约生长了(参考数据)( )
A.17天B.15天C.12天D.10天
8.(2023·贵州·遵义四中高一期末)为了鼓励大家节约用水,遵义市实行了阶梯水价制度,下表是年遵义市每户的综合用水单价与户年用水量的关系表.假设居住在遵义市的艾世宗一家年共缴纳的水费为元,则艾世宗一家年共用水( )
A.B.C.D.
二、多选题
9.(2023·全国·高一课时练习)(多选)如图所示,某池塘中浮萍蔓延的面积y(单位:)与时间t(单位:月)满足函数关系,则下列说法正确的是( )
A.
B.第5个月时,浮萍面积就会超过
C.浮萍的面积从蔓延到需要经过1.5个月
D.浮萍每月增加的面积都相等
10.(2023·全国·高一课时练习)某校学生在研究折纸试验中发现,当对折后纸张达到一定的厚度时,便不能继续对折了.在理想情况下,对折次数n与纸的长边长和厚度满足:.根据以上信息,下列说法正确的是(参考数值:,)( )
A.当对折4次时,的最小值为64
B.当对折4次时,的最小值为32
C.一张长边长为,厚度为的矩形纸最多能对折6次
D.一张长边长为,厚度为的矩形纸最多能对折8次
11.(2023·全国·高一课时练习)某打车平台欲对收费标准进行改革,现制订了甲、乙两种方案供乘客选择,其支付费用y(单位:元)与打车里程x(单位:km)的函数关系大致如图所示,则( )
A.当打车里程为8km时,乘客选择甲方案更省钱
B.当打车里程为10km时,乘客选择甲、乙方案均可
C.打车里程在3km以上时,每千米增加的费用甲方案比乙方案多
D.甲方案3km内(含3km)付费5元,打车里程大于3km时每增加1km费用增加0.7元
三、填空题
12.(2023·江苏·赣榆智贤中学高一阶段练习)某小型服装厂生产一种风衣,日销货量件(单位:件)(∈N*)与货价p(单位:元/件)之间的关系为p=160-2,生产x件所需成本C=100+30(单位:元),当工厂日获利不少于1 000元时,该厂日产量最少生产风衣的件数是___________
13.(2023·全国·高一单元测试)某校食堂需定期购买大米.已知该食堂每天需用大米0.6t,每吨大米的价格为6000元,大米的保管费用z(单位:元)与购买天数x(单位:天)的关系为(),每次购买大米需支付其他固定费用900元.若要使食堂平均每天所支付的总费用最少,则食堂应______天购买一次大米.
14.(2023·全国·高一单元测试)美国对中国芯片的技术封锁激发了中国“芯”的研究热潮.某公司研发的,两种芯片都已经获得成功.该公司研发芯片已经耗费资金2千万元,现在准备投入资金进行生产.经市场调查与预测,生产芯片的毛收入(千万元)与投入的资金(千万元)成正比,已知投入1千万元,公司获得毛收入0.25千万元;生产芯片的毛收入(千万元)与投入的资金(千万元)的函数关系为,其图象如图所示.现在公司准备投入40千万元资金同时生产,两种芯片,则可以获得的最大利润是______千万元.(毛收入=营业收入-营业成本)
四、解答题
15.(2023·四川·成都市新都香城中学高一阶段练习)某企业研发的一条生产线生产某种产品,据测算,其生产的总成本(万元)与月产量(吨)之间的关系式为:,已知此生产线月产量最大为20吨.
(1)求月产量为多少吨时,生产每吨产品的平均成本最低,并求出这个最低成本;
(2)经过评估,企业定价每吨产品的出厂价为32万元,且最大利润不超过200万元,由该生产线月产量的最大值应为多少?
16.(2023·浙江宁波·高一期中)因新冠肺炎疫情影响,呼吸机成为紧缺商品,某呼吸机生产企业为了提高产品的产量,投入成本500万元安装了一台新设备,并立即进行生产,预计使用该设备前年的材料费、维修费、人工工资等成本共为万元,每年的销售收入为260万元,设使用该设备前n年的总盈利额为万元.
(1)写出关于n的函数关系式,并估计该设备从第几年开始盈利?(利润=销售收入-总成本)
(2)问使用到第几年末,年平均利润最大,最大值为多少?
17.(2023·北京·牛栏山一中高一期中)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均时间,某地上班族中的成员仅以自驾或公交方式通勤,分析显示:当中的成员自驾时,自驾群体的人均通勤时间为(单位:分钟),.而公交群体的人均通勤时间不受影响,恒为40分钟,试根据上述分析结果回答下列问题:
(1)当时,求该地上班族的人均通勤时间;
(2)当在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?
(3)求该地上班族的人均通勤时间的表达式;讨论的单调性,并说明其实际意义.
18.(2023·江苏·常州高级中学高一阶段练习)近年来,某企业每年消耗电费24万元,为了节能减排,决定安装一个可使用15年的太阳能供电设备接入企业内电网,安装这种供电设备的费用(单位:万元)与太阳能电池板的面积(单位:平方米)成正比,比例系数为0.5,为了保证正常用电,安装后采用太阳能和电能互补供电的模式,假设在此模式下,安装后该企业每年消耗的电费C(单位:万元)与安装的这种太阳能电池板的面积x(单位:平方米)之间的函数关系是(,k为常数).记F(单位:万元)为该企业安装这种太阳能供电设备的费用与安装后该企业15年内共消耗的电费之和.
(1)求k的值,并建立F关于x的函数关系式;
(2)当x何值时,F取得最小值?最小值是多少万元?
19.(2023·河南南阳·高一期中)为了激励销售人员的积极性,某企业根据业务员的销售额发放奖金(奖金和销售额的单位都为十万元),奖金发放方案要求同时具备下列两个条件:①奖金随销售额的增加而增加;②奖金金额不低于销售额的5%.经测算该企业决定采用函数模型作为奖金发放方案.
(1)若,,此奖金发放方案是否满足条件?并说明理由.
(2)若,要使奖金发放方案满足条件,求实数的取值范围.
时间
50
120
150
种植成本
2600
500
2600
1
2
4
6
8
…
2
4
16
64
256
…
1
4
16
36
64
…
0
1
2
2.585
3
…
-2
-1
0
1
2
3
0.24
0.51
1
2.02
3.98
8.02
年份
2015
2016
2017
2018
投资成本
3
5
9
17
…
年利润
1
2
3
4
…
1
4
9
16
1
分档
户年用水量
综合用水单价/(元)
第一阶梯
(含)
第二阶梯
(含)
第三阶梯
以上
微专题18 函数的应用
【方法技巧与总结】
知识点一、几种常见的函数模型
1、一次函数模型:(,为常数,)
2、二次函数模型:(为常数,)
3、指数函数模型:(为常数,,且)
4、对数函数模型:(为常数,,且)
5、幂函数模型:(为常数,)
6、分段函数模型:
知识点二、解答应用问题的基本思想和步骤
1、解应用题的基本思想
2、解答函数应用题的基本步骤
求解函数应用题时一般按以下几步进行:
第一步:审题
弄清题意,分清条件和结论,理顺数量关系,初步选择模型.
第二步:建模
在细心阅读与深入理解题意的基础上,引进数学符号,将问题的非数学语言合理转化为数学语言,然后根据题意,列出数量关系,建立函数模型.这时,要注意函数的定义域应符合实际问题的要求.
第三步:求模
运用数学方法及函数知识进行推理、运算,求解数学模型,得出结果.
第四步:还原
把数学结果转译成实际问题作出解答,对于解出的结果要代入原问题中进行检验、评判,使其符合实际背景.
上述四步可概括为以下流程:
实际问题(文字语言)数学问题(数量关系与函数模型)建模(数学语言)求模(求解数学问题)反馈(还原成实际问题的解答).
【题型归纳目录】
题型一:几类不同增长的函数模型
题型二:二次函数模型
题型三:分段函数模型
题型四:分式型函数模型
题型五:对数函数模型
题型六:幂函数模型
题型七:利用给定函数模型解决实际问题
【典型例题】
题型一:几类不同增长的函数模型
例1.(2023·陕西·榆林市第十中学高一期中)某地西红柿从2月1日起开始上市.通过市场调查,得到西红柿种植成本单位:元与上市时间(单位:天)的数据如下表:
由表知,体现与数据关系的最佳函数模型是( )
A.B.
C.D.
答案:B
【解析】由提供的数据知,描述西红柿种植成本Q与上市时间t的变化关系函数不可能是常数函数,
也不是单调函数;而A,C,D对应的函数,在时,均为单调函数,
这与表格提供的数据不吻合,所以,选取B,
故选:B.
例2.(2023·全国·高一课时练习)已知三个变量,,随变量的变化数据如下表:
则反映,,随x变化情况拟合较好的一组函数模型是( )
A.,,B.,,
C.,,D.,,
答案:B
【解析】从题表可以看出,三个变量,,都随x的增大而增大,但是增长速度不同,其中变量的增长呈指数函数型变化,变量的增长呈幂函数型变化,变量的增长呈对数函数型变化.
此外,也可以使用第五组数据代入检验得到答案.
故选:B.
例3.(2023·全国·高一课时练习)下列函数中,当很大时,随的增大而增大速度最快的是( )
A.B.C.D.
答案:A
【解析】由题意,当很大时,指数函数增长速度大于一次函数的增长速度,一次函数的增长速度大于对数函数的增长速度,又,所以当很大时,随的增大而增大速度最快的是.
故选:A
变式1.(2023·全国·高一课时练习)下面对函数,与在区间上的衰减情况的叙述正确的是( )
A.的衰减速度逐渐变慢,的衰减速度逐渐变快,的衰减速度逐渐变慢
B.的衰减速度逐渐变快,的衰减速度逐渐变慢,的衰减速度逐渐变快
C.的衰减速度逐渐变慢,的衰减速度逐渐变慢,的衰减速度逐渐变慢
D.的衰减速度逐渐变快,的衰减速度逐渐变快,的衰减速度逐渐变快
答案:C
【解析】由函数,与在区间上的图象以及性质知函数,,的衰减速度均逐渐变慢,
故选:C.
变式2.(2023·全国·高一课时练习)在一次数学实验中,采集到如下一组数据:
则,的函数关系与下列各类函数最接近的是(其中,为待定系数)( )
A.B.C.D.
答案:B
【解析】根据题表中的数据描点如图所示.
∵对应数据显示该函数是增函数,且增幅越来越快,∴A不成立;
∵C是偶函数,∴的函数值应该相等,∴C不成立;
∵时,无意义,∴D不成立;
对于B,当时,,当时,,经验证它与各数据比较接近.
故选:B.
题型二:二次函数模型
例4.(2023·上海市莘庄中学高一阶段练习)行驶中的汽车,在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离,在某种路面上,某种型号汽车的刹车距离与汽车的车速满足下列关系:(为常数,且),做了两次刹车试验,有关试验数据如图所示,其中.
(1)求的值;
(2)要使刹车距离不超过,则行驶的最大速度是多少?
【解析】(1)观察图象知,,而,即,解得,
因,于是得,
所以的值为6.
(2)由(1)知,,当时,,整理得:,
解得,显然,因此,即,
所以行驶的最大速度是.
例5.(2023·浙江省永嘉县碧莲中学高一期中)某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需要增加投入100元,已知总收益(单位:元)函数为,其中是仪器的产量(单位:台)
(1)将利润(单位:元)表示为产量的函数(利润=总收益-总成本);
(2)当产量为多少时,公司所获利润最大?最大利润是多少?
【解析】(1)依题意,总成本为,
当时,,
当时,,
综上所述,其中;
(2)当时,,
当时,;
当时,是单调递减函数,
,
当时,.
答:当产量为300台时,公司获利润最大,最大利润为25000元.
例6.(2023·江苏·常熟中学高一阶段练习)某景区要建一个游乐场(如图所示),其中、分别靠现有墙、(墙长为27米,墙足够长),其余用篱笆围成.篱笆将游乐场隔成等腰直角和长方形两部分,并在三处各留2米宽的大门,已知篱笆总长为54米,设长为米,面积为平方米.
(1)求与的函数关系式及的取值范围;
(2)当多长时,游乐场的面积为320平方米?
【解析】(1),
因为长为米,所以米,
因为篱笆总长为54米,三处各留2米宽的大门,
所以米,
由长为27米,墙足够长,可知,解得:,
所以长方形的面积为,
所以,;
(2)令平方米,
即,解得:或8,
因为,
所以,
所以当长为16米时,游乐场的面积为320平方米.
变式3.(2023·广东汕头·高一期末)为节约能源,倡导绿色环保,某主题公园有60辆电动观光车供租赁使用,管理这些电动观光车的费用是每日120元.根据经验,若每辆电动观光车的日租金不超过5元,则电动观光车可以全部租出;若超过5元,则每超过1元,租不出的电动观光车就增加2辆.为了便于结算,每辆电动观光车的日租金x(元)只取整数,并且要求出租电动观光车一日的收入必须高于这一日的管理费用,用y(元)表示出租电动观光车的日净收入(即一日出租电动观光车的总收入减去管理费用后的所得).
(1)求函数;
(2)试问当每辆电动观光车的日租金为多少元时,才能使一日的净收入最多?
【解析】(1)当时,,令,解得,
,,,,
当时,,
令,其整数解为:,,
所以,,
所以
(2)对于,显然当时,元,
对于,
因为,
所以当或时,元,,
当每辆电动观光车的日租金定在17或18元时,才能使一日的净收入最多.
题型三:分段函数模型
例7.(2023·云南师大附中高一期中)第二十二届世界杯足球赛将于2022年11月20日至12月18日在卡塔尔举行,这是世界杯足球赛首次在中东国家举行.本届世界杯很可能是“绝代双骄”梅西、C罗的绝唱,狂傲的青春也将被时间揽入温柔的怀抱.即将说再见时,才发现,那属于一代人的绝世风华,不会随年华逝去,只会在年华的飘零中不经意的想起.世界杯,是球员们圆梦的舞台,是球迷们情怀的归宿,也是商人们角逐的竞技场.某足球运动装备生产企业,2022年的固定成本为1000万元,每生产千件装备,需另投入资金(万元).经计算与市场评估得,调查发现,当生产10千件装备时需另投入的资金万元.每千件装备的市场售价为300万元,从市场调查来看,2022年最多能售出150千件.
(1)写出2022年利润(万元)关于年产量(千件)的函数;(利润=销售总额-总成本)
(2)求当2022年产量为多少千件时,该企业所获得的利润最大?最大利润是多少?
【解析】(1)由题意知,当时,,
所以,
当时,;
当时,,
所以;
(2)当时,函数在上是增函数,在上是减函数,
所以当时,有最大值,最大值为1500;
当时,由基本不等式,得
,
当且仅当时取等号,
所以当时,有最大值,最大值为1550;
因为,
所以当年产量为100千件时,该企业的年利润最大,最大年利润为1550万元.
例8.(2023·江苏省灌南高级中学高一阶段练习)某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数(其中x是仪器的月产量).
(1)将利润y表示为月产量x的函数;
(2)当月产量x为何值时,平均每件产品所获利润最大?每件产品的最大利润为多少元?
【解析】(1)设每月产量为x台,则总成本为,
从而,
(2)设平均每件产品的月利润为,
则,
当时,设任意的,
则,
显然当时,,
当时,,
所以,函数在区间上单调递增,在区间上单调递减,
当时,取得最大值为200元;
当时,,
∵,所以当时,平均每件产品所获利润最大为200元.
例9.(2023·江苏省灌云高级中学高一期末)我国某企业自主研发了一款具有自主知识产权的平板电脑,并从2021年起全面发售.经测算,生产该平板电脑每年需投入固定成本1350万元,每生产 (千台)电脑需要另投成本万元,且另外每台平板电脑售价为0.6万元,假设每年生产的平板电脑能够全部售出.已知2021年共售出10000台平板电脑,企业获得年利润为1650万元.
(1)求该企业获得年利润(万元)关于年产量 (千台)的函数关系式;
(2)当年产量为多少千台时,该企业所获年利润最大?并求最大年利润.
【解析】(1)10 000台=10千台,则,根据题意得:,解得,
当时,,
当时,
,
综上所述.
(2)当时,
当时, 取得最大值;
当时,
,
当且仅当时,
因为,
故当年产量为100千台时,该企业所获年利润最大,最大年利润为5 900万元.
变式4.(2023·云南·高一阶段练习)为了解决受新冠疫情影响,文具用品滞销的问题,文具店老板利用某直播平台卖货,销售的文具主要有圆珠笔、笔记本、文具盒、钢笔,价格依次为2元/支、10元/本、14元/个、25元/支.为了增加销量,老板决定对这4种文具进行1次优惠大促销:优惠活动①,提供满50元减4元的优惠券,优惠券可叠加;优惠活动②,提供买1套文具(包括1支圆珠笔、1本笔记本、1个文具盒、1支钢笔)减x(,且)元的优惠券,优惠券可叠加,每位顾客只能参加其中一种优惠活动,每位顾客在网上支付订单成功后,文具店老板都会得到支付款的80%.已知甲顾客购买了1套文具,选择优惠活动②,并且文具店老板从甲顾客的支付款中得到了36元.
(1)求x的值;
(2)已知乙、丙两位顺客计划在该文具店购买圆珠笔、笔记本、文具盒、钢笔这4种文具,计划购买的圆珠笔的数量多于笔记本的数量的2倍,笔记本的数量多于文具盒的数量,文具盒的数量多于钢笔的数量,钢笔数量的3倍多于圆珠笔的数量,当乙、丙购买的文具总数最少时,请你给乙、丙设计1种最省钱的购买方案,并求乙、丙花费的总费用的最小值.
【解析】(1)由题意得,
解得.
(2)设购买圆珠笔,笔记本,文具盒,钢笔的数量分别为a,b,c,d,且.
由题意得,
得,得,
所以,,.
当乙、丙购买的文具总数最少时,,,,.
未选择优惠活动之前,文具总价格为元.
方案1:乙、丙一起购买,选择优惠活动①,可以优惠元.
方案2,乙,丙一起购买,选择优惠活动②,可以优惠元.
方案3:乙、丙分开购买,因为优惠活动②的优惠力度更大,所以安排1人先购买6套文具,选择优惠活动②,另一个人购买11支圆珠笔、2本笔记本、1个文具盒,选择优惠活动①.
因为,所以可以优惠元,此时乙、丙花费的总费用最小,最小值为元.
故方案3最省钱,乙、丙花费的总费用的最小值为322元.
题型四:分式型函数模型
例10.(2023·江苏省新海高级中学高一期中)甲乙两地相距,汽车从甲地以的速度匀速行驶到乙地.已知汽车每小时的运输成本由固定成本和可变成本组成,固定成本为元,可变成本与速度的平方成正比,比例系数为.已知当速度为进行行驶时,每小时运输的可变成本的36元,设全程运输成本元.
(1)求全程运输成本关于速度的函数关系式;
(2)为使全程运输成本最小,汽车应以多大速度行驶?
【解析】(1)由题意可设每小时运输的可变成本为,
因为当速度为进行行驶时,每小时运输的可变成本的36元,
所以有,即,
因此;
(2)因为在上单调递减,在上单调递增,
所以当时,即当时,有
当且仅当时取等号,即当时取等号,
当时,即时,应以速度为速度行驶,
所以为使全程运输成本最小,当时,汽车应以的速度行驶,
当时,应以速度为速度行驶.
例11.(2023·湖南·长沙一中高一阶段练习)某品牌电动汽车在某路段以每小时x千米的速度匀速行驶240千米.该路段限速(单位:千米/时).充电费为1.5元/千瓦时,电动汽车行驶时每小时耗电千瓦时,轮胎磨损费为元/千米,道路通行费为0.2元/千米.
(1)求这次行车总费用y关于x的表达式;
(2)当行车速度x为何值时,这次行车的总费用最低,并求出最低费用的值.
【解析】(1).
(2)因为,.
所以,所以行车费最低为()元.
当,即,时取得.
答:行车速度为千米/时,这次行车的总费用最低,最低费用为()元.
例12.(2023·上海市第二中学高一阶段练习)某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900m²的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m,三块矩形区域的前、后与内墙各保留1m宽的通道,左、右两块矩形区域分别与相邻的左、右内墙保留3m宽的通道,如图,设矩形温室的室内长为(m),三块种植植物的矩形区域的总面积为().
(1)写出与之间的关系式,并写出的取值范围∶
(2)若要求矩形区域总面积不少于656m²,求室内长的取值范围.
【解析】(1)根据题意,温室的室内长为,则宽为,
所以三块种植植物的矩形区域的总面积为:
,
由,可得;
(2)由,
可得,
解得,
即室内长的取值范围为(单位m).
变式5.(2023·宁夏·石嘴山市第一中学高一阶段练习)近日,随着新冠肺炎疫情在多地零星散发,为最大程度减少人员流动,减少疫情发生的可能性,宁夏政府积极制定政策,决定政企联动,鼓励企业在国庆期间留住员工在本市过节并加班追产.为此,该地政府决定为当地某A企业国庆节期间加班追产提供(万元)的专项补贴.A企业在收到政府x(万元)补贴后,产量将增加到(万件).同时A企业生产t(万件)产品需要投入成本为(万元),并以每件元的价格将其生产的产品全部售出.注:收益=销售金额+政府专项补贴-成本
(1)求企业国庆节期间加班追产所获收益(万元)关于政府补贴(万元)的函数关系式;
(2)当政府的专项补贴为多少万元时,A企业国庆节期间加班追产所获收益最大?
【解析】(1)由题意,销售金额:(万元),政府专项补贴:(万元),成本:(万元).
所以收益,.
(2)由(1)可知,.
其中,当且仅当,即时取等号,所以,
所以当时,企业国庆期间加班追产所获收益最大,最大值为万元,
即当政府的专项补贴为万元时,企业国庆期间加班追产所获收益最大,最大值为万元.
题型五:对数函数模型
例13.(2023·全国·高一单元测试)某同学对航天知识有着浓厚的兴趣,通过查阅资料,他发现在不考虑气动阻力和地球引力等造成的影响时,火箭是目前唯一能使物体达到宇宙速度,克服或摆脱地球引力,进入宇宙空间的运载工具.早在1903年齐奥尔科夫斯基就推导出火箭的最大理想速度公式:,被称为齐奥尔科夫斯基公式,其中为喷流相对火箭的速度,和分别是火箭的初始质量和发动机熄火(推进剂用完)时的质量,被称为火箭的质量比.
(1)某火箭的初始质量为160吨,喷流相对火箭的速度为2千米/秒,发动机熄火时的火箭质量为40吨,求该火箭的最大理想速度(保留2位有效数字);
(2)根据现在的科学水平,通常火箭的质量比不超过10.如果喷流相对火箭的速度为2千米/秒,请判断该火箭的最大理想速度能否超过第一宇宙速度7.9千米/秒,并说明理由.
(参考数据:)
【解析】(1)由题意,,,,
∴,
∴该火箭的最大理想速度为2.8千米/秒.
(2)∵,,∴.
∵,∴,
即.
∴该火箭的最大理想速度不能超过第一宇宙速度7.9千米/秒.
例14.(2023·全国·高一课时练习)学校鼓励学生课余时间积极参加体育锻炼,每天能用于锻炼的课余时间有90分钟,现需要制定一个课余锻炼考核评分制度,建立一个每天得分与当天锻炼时间(单位:分)的函数关系,要求及图示如下:(1)函数是区间上的增函数;(2)每天运动时间为0分钟时,当天得分为0分;(3)每天运动时间为30分钟时,当天得分为3分;(4)每天最多得分不超过6分.现有三个函数模型①,
②,③供选择.
(1)请你从中选择一个合适的函数模型并说明理由,再根据所给信息求出函数的解析式;
(2)求每天得分不少于4.5分,至少需要锻炼多少分钟.(注:,结果保留整数)
【解析】(1)第一步:分析题中每个模型的特点
对于模型一,当时,匀速增长;
对于模型二,当时,先慢后快增长;
对于模型三,当时,先快后慢增长.
第二步:根据题中材料和题图选择合适的函数模型
从题图看应选择先快后慢增长的函数模型,故选.
第三步:把题图中的两点代入选好的模型中,得到函数解析式
将(0,0),(30,3)代入解析式得到,即,
解得,即.
第四步:验证模型是否合适
当时,,
满足每天得分最高不超过6分的条件.
所以函数的解析式为.
(2)由,得,
得,得,
所以每天得分不少于4.5分,至少需要运动55分钟.
例15.(2023·云南玉溪·高一期末)某集团公司为鼓励下属企业创业,拟对年产值在50万元到500万元的新增小微企业进行奖励,奖励方案遵循以下原则:奖金(单位:万元)随年产值(单位:万元)的增加而增加,但奖金不低于7万元,且不超过年产值的.
(1)若某下属企业年产值100万元,核定可得9万元奖金.试分析函数模型(为常数)是否为符合集团的奖励原则,并说明原因;
(2)设,若函数模型符合奖励原则,试求的取值范围.参考数据:.
【解析】(1)对于函数模型(为常数),
当时,,代入模型解得,
所以,
奖励原则为:①在区间上递增;②恒成立,
当时,模型是增函数,符合奖励原则①;
当时,;
,所以,模型不符合奖励原则②,
故该函数模型不符合奖励原则.
(2)对于函数模型,可得,
因为,故函数在递增,则在递增,符合奖励原则①;
由奖励原则②得,即,解得;
又由奖励原则②得,即在恒成立,
即,,
设,则抛物线开口向下,对称轴为,
所以当时,,由得,
综上,.
所以的取值范围是.
变式6.(2023·全国·高一课时练习)近年来,我国在航天领域取得了巨大成就,得益于我国先进的运载火箭技术.据了解,在不考虑空气阻力和地球引力的理想状态下,可以用公式计算火箭的最大速度v(单位:m/s).其中(单位m/s)是喷流相对速度,m(单位:kg)是火箭(除推进剂外)的质量,M(单位:kg)是推进剂与火箭质量的总和,称为“总质比”,已知A型火箭的喷流相对速度为2000m/s.
参考数据:,.
(1)当总质比为230时,利用给出的参考数据求A型火箭的最大速度;
(2)经过材料更新和技术改进后,A型火箭的喷流相对速度提高到了原来的1.5倍,总质比变为原来的,若要使火箭的最大速度增加500 m/s,记此时在材料更新和技术改进前的总质比为T,求不小于T的最小整数?
【解析】(1)当总质比为230时,,
即A型火箭的最大速度为.
(2)A型火箭的喷流相对速度提高到了原来的1.5倍,所以A型火箭的喷流相对速度为,总质比为,
由题意得:
因为,所以,
即,所以不小于T的最小整数为45.
变式7.(2023·吉林·长春市第二中学高一期末)某新型企业为获得更大利润,须不断加大投资,若预计年利润低于10%时,则该企业就考虑转型,下表显示的是某企业几年来利润y(百万元)与年投资成本x(百万元)变化的一组数据:
给出以下3个函数模型:①;②(,且);③(,且).
(1)选择一个恰当的函数模型来描述x,y之间的关系,并求出其解析式;
(2)试判断该企业年利润不低于6百万元时,该企业是否要考虑转型.
【解析】(1)由表格中的数据可知,年利润是随着投资成本的递增而递增,而①是单调递减,所以不符合题意;
将,代入(,且),
得,解得,∴.
当时,,不符合题意;
将,代入(,且),
得,解得,∴.
当时,;当时,.
故可用③来描述x,y之间的关系.
(2)由题知,解得.
∵年利润,∴该企业要考虑转型.
题型六:幂函数模型
例16.(2023·全国·高一专题练习)自2014年9月25日起,三峡大坝旅游景点对中国游客(含港、澳、台同胞、海外侨胞)施行门票免费,去三峡大坝旅游的游客人数增长越来越快,经统计发现2017年三峡大坝游客总量约为200万人,2018年约为240万人,2019年约为288万人,三峡大坝的年游客人数y与年份代码x(记2017年的年份代码为,2018年年份代码为,依此类推)有两个函数模型与可供选择.
(1)试判断哪个函数模型更合适(不需计算,简述理由即可),并求出该模型的函数解析式;
(2)问大约在哪一年,三峡大坝旅客年游览人数约是2018年的2倍.(参考数据:,,,)
【解析】(1)因为函数中,随的增长而增长的速度越来越快,
而函数,随的增长而增长的速度越来越慢,
故由题意应选;
则有,解得,
∴;
(2)设经过年,三峡大坝旅客年游览人数约是2018年的2倍,
则,即,
∴,
∴,
故大约在2022年三峡大坝旅客年游览人数约是2018年的2倍.
例17.(2023·广东珠海·高一期末)果园A占地约3000亩,拟选用果树B进行种植,在相同种植条件下,果树B每亩最多可种植40棵,种植成本(万元)与果树数量(百棵)之间的关系如下表所示.
(1)根据以上表格中的数据判断:与哪一个更适合作为与的函数模型;
(2)已知该果园的年利润(万元)与的关系为,则果树数量为多少时年利润最大?
【解析】(1)①若选择作为与的函数模型,将的坐标分别带入,得
解得
此时,当时,,
当时,,
与表格中的和相差较大,
所以不适合作为与的函数模型.
②若选择作为与的函数模型,将的坐标分别带入,得
解得
此时,当时,,
当时,,
刚好与表格中的和相符合,
所以更适合作为与的函数模型.
(2)由题可知,该果园最多120000棵该吕种果树,所以确定的取值范围为,
令,则
经计算,当时,取最大值(万元),
即,时(每亩约38棵),利润最大.
例18.(2023·全国·高一专题练习)某企业生产,两种产品,根据市场调查和预测,产品的利润(万元)与投资额(万元)成正比,其关系如图(1)所示;产品的利润(万元)与投资额(万元)的算术平方根成正比,其关系如图(2)所示.
(1)分别将,两种产品的利润表示为投资额的函数;
(2)该企业已筹集到10万元资金,并全部投入,两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润?其最大利润约为多少万元(精确到1万元)?
【解析】(1)设投资额为万元,产品的利润为万元,产品的利润为万元,
由题设,,
由图可知(1),所以,又(4),所以,
所以,;
(2)设产品投入万元,则产品投入万元,设企业的利润为万元,
,,
令,则,,
所以当时,,此时,
所以当产品投入3.75万元,产品投入6.25万元,企业获得最大利润为万元,即4.0625万元.
变式8.(2023·福建漳州·高一期末)2021年10月26日下午,习近平总书记参观国家“十三五”科技成就展强调,坚定创新自信紧抓创新机遇,加快实现高水平科技自立自强.面向人民生命健康,重点展示一体化全身正电子发射磁共振成像装备,在红色“健康中国”四个大字衬托下,更显科技创新为人民健康“保驾护航”的意义.为促进科技创新,某医学影像设备设计公司决定将在2022年对研发新产品团队进行奖励,奖励方案如下:奖金(单位:万元)随收益(单位:万元)的增加而增加,且奖金不超过90万元,同时奖金不超过收益的,预计收益.
(1)分别判断以下三个函数模型:,能否符合公司奖励方案的要求,并说明理由;(参考数据:)
(2)已知函数模型符合公司奖励方案的要求,求实数的取值范围.
【解析】(1)函数模型,满足奖金随收益增加而增加,
因为,
所以当时,,即奖金超过90万,不满足要求;
函数模型,当时,,此时奖金超过收益的,不满足要求;
函数模型,满足奖金随收益增加而增加,
当时,,满足奖金不超过90万元,
又时,,满足奖金不超过收益的,函数模型能符合公司的要求.
(2)函数模型,
因为奖金随收益增加而增加,所以,
当时,,解得,
当时,,解得,
当时,恒成立,
即,
又,当且仅当时等号成立,
所以,
综上所述,实数的取值范围是.
题型七:利用给定函数模型解决实际问题
例19.(2023·浙江省衢州第三中学高一阶段练习)今年的新冠肺炎疫情是21世纪以来规模最大的突发公共卫生事件,疫情早期,武汉成为疫情重灾区,据了解,为了最大限度保障人民群众的生命安全,现需要按照要求建造隔离病房和药物仓库.已知建造隔离病房的所有费用(万元)和病房与药物仓库的距离(千米)的关系为:.若距离为1千米时,隔离病房建造费用为100万元.为了方便,隔离病房与药物仓库之间还需修建一条道路,已知购置修路设备需5万元,铺设路面每公里成本为6万元,设为建造病房与修路费用之和.
(1)求的表达式;
(2)当隔离病房与药物仓库距离多远时,可使得总费用最小?并求出最小值.
【解析】(1)由题意知,距离为1km时,隔离病房建造费用为100万元,
所以,得,
所以;
(2)由(1)知,
,
当且仅当即时,等号成立,
即当时,函数取到最小值75万元,
所以隔离病房与药物仓库距离5km时,可使得总费用最小,最小值为75万元.
例20.(2023·辽宁·沈阳市辽中区第二高级中学高一阶段练习)某种商品原来每件售价为25元,年销售8万件.
(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?
(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x元,公司拟投入万元作为技改费用,投入万元作为宣传费用.试问:当该商品明年的销售量a至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时每件商品的定价.
【解析】(1)设每件定价为t元,依题意,有,
整理得,解得
因此要使销售的总收入不低于原收入,每件定价最多为40元.
(2)依题意,时,
不等式能成立,
等价于时,有解.
∵时,(当且仅当时,等号成立),
∴.
因此当该商品明年的销售量a至少应达到12.2万件时,才可能使明年的销售收入不低于原收入与总投入之和,此时该商品的定价为每件30元.
例21.(2023·黑龙江·哈师大附中高一阶段练习)前一阶段,随着新冠肺炎疫情在多地零星散发,一些城市陆续发出“十一期间非必要不返乡”的倡议.为最大程度减少人员流动,减少疫情发生的可能性,某地政府积极制定政策,决定政企联动,鼓励企业在十一期间留住员工在本市过节并加班追产.为此,该地政府决定为当地企业十一期间加班追产提供(万元)的专项补贴.企业在收到政府(万元)补贴后,产量将增加到(万件).同时企业生产(万件)产品需要投入成本为(万元),并以每件元的价格将其生产的产品全部售出.注:收益=销售金额+政府专项补贴-成本
(1)求企业十一期间加班追产所获收益(万元)关于政府补贴(万元)的函数关系式;
(2)当政府的专项补贴为多少万元时,企业十一期间加班追产所获收益最大?
【解析】(1)依题意可知,销售金额万元,政府补贴万元,成本为万元;
所以收益,
(2)由(1)可知,
其中,
当且仅当,即时取等号,
所以,
所以当时,A企业十一期间加班追产所获收益最大,最大值为万元;
即当政府的专项补贴为万元时,A企业十一期间加班追产所获收益最大,最大值为万元
变式9.(2023·山东省青岛第五十八中学高一期中)2022年第12号强台风“梅花”9月8日自在西北太平洋洋面生成,至9月16日减弱为温带气旋停止编号,共历时8天,期间4次登录我国东部沿海。9月14日20时30分前后,在我国浙江省舟山普陀沿海首次登陆,登陆时中心附近最大风力14级,9月16日0时左右在山东省青岛市崂山区沿海第三次登陆,台风过境时带来的狂风暴雨天气,造成了人民生命、财产的巨大损失,受灾民众不惧困难,众志成城,积极开展抗灾、救灾,守护自己的美丽家园。某地受其影响普降暴雨,一大型堤坝发生了渗水现象,当发现时已有的坝面渗水,经测算,坝面每平方米发生渗水现象的直接经济损失约为300元,且渗水面积以每天的速度扩散.当地有关部门在发现的同时立即组织人员抢修渗水坝面,假定每位抢修人员平均每天可抢修渗水面积,该部门需支出服装补贴费为每人600元,劳务费及耗材费为每人每天300元.若安排x名人员参与抢修,需要k天完成抢修工作.
(1)写出k关于x的函数关系式;
(2)应安排多少名人员参与抢修,才能使总损失最小.(总损失=因渗水造成的直接损失+部门的各项支出费用)
【解析】(1)由题意得,
所以,,
(2)设总损失为元,则
当且仅当,即时,等号成立.
所以,应安排22名民工参与抢修,才能使总损失最小.
变式10.(2023·宁夏六盘山高级中学高一阶段练习)某小型服装厂生产一种风衣,日销货量件()与货价p元/件之间的关系为,生产件所需成本为元.
(1)若该厂某日的销货量是30件,求该厂当日的获利是多少元?
(2)若该厂日获利不少于1300元,求该厂日产量的取值范围.
【解析】(1)当时,,,
所以该厂当日的获利是(元);
(2)设该厂日获利为,则由题意得
,
由,得,
所以,即,
解得,
所以当日产量在20到45件之间(含20件和45件)时,日获利不少于1300元.
【过关测试】
一、单选题
1.(2023·浙江师范大学附属中学高一期中)在流行病学中,每名感染者平均可传染的人数叫做基本传染数.当基本传染数高于1时,每个感染者平均会感染一个以上的人,从而导致感染者人数急剧增长.当基本传染数低于1时,疫情才可能逐渐消散.而广泛接种疫苗是降低基本传染数的有效途径.假设某种传染病的基本传染数为,1个感染者平均会接触到个新人,这人中有个人接种过疫苗(称为接种率),那么1个感染者可传染的新感染人数为.已知某病毒在某地的基本传染数,为了使1个感染者可传染的新感染人数不超过1,该地疫苗的接种率至少为( )
A.B.C.D.
答案:A
【解析】为了使1个感染者传染人数不超过1,只需,
所以,即,
因为,
所以,解得,
则地疫苗的接种率至少为.
故选:A.
2.(2023·云南·高一阶段练习)某农家院有客房 20 间,日常每间客房日租金为 100 元,每天都客满.该农家院欲重新装修提高档次,并提高租金,经市场调研,每间客房日租金每增加10元,每天客房的出租间数就会减少1,则该农家院重新装修后,每天客房的租金总收入最高为( )
A.2250 元B.2300 元C.2350 元D.2400 元
答案:A
【解析】设每间客房日租金提高个10元,每天客房的租金总收入为元,则
当且仅当时,取得最大值
故选:
3.(2023·甘肃·天水市第一中学高一开学考试)一件工艺品的进价为元,标价元出售,每天可售出件,根据销售统计,一件工艺品每降价元,则每天可多售出件,要使每天获得的利润最大,则每件需降价( )
A.元B.元C.元D.元
答案:B
【解析】设每天的销售量为件,每件工艺品的标价为元,则关于的函数为一次函数,设,
由题意可得,解得,则,
故每天获得的利润为,
故当元时,每天获得的利润最大,
因此,要使每天获得的利润最大,则每件需降价元.
故选:B.
4.(2023·四川省德阳中学校高一阶段练习)我们通常以分贝为单位来表示声音大小的等级,分贝为安静环境,超过50分贝将对人体有影响,90分贝以上的环境会严重影响听力且会引起神经衰弱等疾病.如果强度为的声音对应的分贝数为,那么满足:.若在地铁中多人外放电子设备加上行车噪音,车厢内的声音的分贝能达到,则的声音与的声音强度之比为( )
A.40B.100C.40000D.10000
答案:D
【解析】由题意可知,当声音强度的等级为90dB时,有,得;此时对应的强度.
当声音强度的等级为50dB时,有,得,此时对应的强度.
∴90dB的声音与50dB的声音强度之比为.
故选:D.
5.(2023·全国·高一单元测试)2004年中国探月工程正式立项,从嫦娥一号升空,到嫦娥五号携月壤返回,中国人一步一步将“上九天揽月”的神话变为现实.月球距离地球约38万千米有人说,在理想状态下,若将一张厚度约为0.1毫米的纸对折n次,其厚度就可以超过月球距离地球的距离.那么至少对折的次数n是(参考数据:,)( )
A.40B.41C.42D.43
答案:C
【解析】设对折n次时,纸的厚度为y(单位:毫米),
由题意可知若将一张厚度约为0.1毫米的纸对折n次,则.
令,即,
所以,即,
所以至少对折的次数n是42.
故选:C.
6.(2023·全国·高一课时练习)已知函数,,,则下列关于这三个函数的描述中,正确的是( )
A.在上,随着的逐渐增大,增长速度越来越快于
B.在上,随着的逐渐增大,增长速度越来越快于
C.当时,的增长速度一直快于
D.当时,
答案:B
【解析】在同一平面直角坐标系中画出函数,,的图像,
如图所示,在上,随着的逐渐增大,的增长速度越来越快,且快于,故A错误;B正确;
对于C,当时,的增长速度不是一直快于,故C错误;
对于D,当时,,故D错误.
故选:B.
7.(2023·全国·高一单元测试)春天是一个美丽、神奇,充满希望的季节,我们每个人都应当保持像春天一样朝气蓬勃的生命力,去创造属于我们自己的美好生活.随着2022年春天的深入,某池塘中的荷花枝繁叶茂,已知每经过一天的生长,荷叶覆盖水面面积都是前一天的倍,若荷叶20天可以完全长满池塘水面,则当荷叶刚好覆盖水面面积一半时,荷叶大约生长了(参考数据)( )
A.17天B.15天C.12天D.10天
答案:A
【解析】设荷叶覆盖水面的初始面积为,则天后荷叶覆盖水面的面积,根据题意,令,即,两边取以10为底的对数得,所以解得.
故选:A.
8.(2023·贵州·遵义四中高一期末)为了鼓励大家节约用水,遵义市实行了阶梯水价制度,下表是年遵义市每户的综合用水单价与户年用水量的关系表.假设居住在遵义市的艾世宗一家年共缴纳的水费为元,则艾世宗一家年共用水( )
A.B.C.D.
答案:B
【解析】设户年用水量为,年缴纳的税费为元,
则,即,
当时,,
当时,,
当时,,
所以,解得,
所以艾世宗一家年共用水.
故选:B
二、多选题
9.(2023·全国·高一课时练习)(多选)如图所示,某池塘中浮萍蔓延的面积y(单位:)与时间t(单位:月)满足函数关系,则下列说法正确的是( )
A.
B.第5个月时,浮萍面积就会超过
C.浮萍的面积从蔓延到需要经过1.5个月
D.浮萍每月增加的面积都相等
答案:AB
【解析】由题意,函数图像满足的关系,由图象可知,当时,,
所以,解得,当时,,满足,
当时,,满足,故,选项A正确;
当时,,故浮萍蔓延的面积就会超过,选项B正确;
由题意,,所以,,所以,所以增加的时间为
,而,所以,故选项C错误;
由题意可知,当时,;当时,;当时,;
当时,;当时,,
所以从第一个开始,每个月增加的面积分别为、、、,
所以增加的面积不相等,故选项D错误.
故选:AB.
10.(2023·全国·高一课时练习)某校学生在研究折纸试验中发现,当对折后纸张达到一定的厚度时,便不能继续对折了.在理想情况下,对折次数n与纸的长边长和厚度满足:.根据以上信息,下列说法正确的是(参考数值:,)( )
A.当对折4次时,的最小值为64
B.当对折4次时,的最小值为32
C.一张长边长为,厚度为的矩形纸最多能对折6次
D.一张长边长为,厚度为的矩形纸最多能对折8次
答案:AC
【解析】令,则,则,即,
即当对折4次时,的最小值为64,故A正确,B错误;
当,x=0.05cm时,,
所以该矩形纸最多能对折6次,故C正确,D错误,
故选:AC.
11.(2023·全国·高一课时练习)某打车平台欲对收费标准进行改革,现制订了甲、乙两种方案供乘客选择,其支付费用y(单位:元)与打车里程x(单位:km)的函数关系大致如图所示,则( )
A.当打车里程为8km时,乘客选择甲方案更省钱
B.当打车里程为10km时,乘客选择甲、乙方案均可
C.打车里程在3km以上时,每千米增加的费用甲方案比乙方案多
D.甲方案3km内(含3km)付费5元,打车里程大于3km时每增加1km费用增加0.7元
答案:ABC
【解析】对于A,当3<x<10时,甲对应的函数值小于乙对应的函数值,故当打车里程为8km时,乘客选择甲方案更省钱,故A正确;
对于B,当打车里程为10km时,甲、乙方案的费用均为12元,故乘客选择甲、乙方案均可,故B正确;
对于C,打车3km以上时,甲方案每千米增加的费用为(元),乙方案每千米增加的费用为(元),故每千米增加的费用甲方案比乙方案多,故C正确;
对于D,由图可知,甲方案3km内(含3km)付费5元,3km以上时,甲方案每千米增加的费用为1(元),故D错误.
故选:ABC.
三、填空题
12.(2023·江苏·赣榆智贤中学高一阶段练习)某小型服装厂生产一种风衣,日销货量件(单位:件)(∈N*)与货价p(单位:元/件)之间的关系为p=160-2,生产x件所需成本C=100+30(单位:元),当工厂日获利不少于1 000元时,该厂日产量最少生产风衣的件数是___________
答案:10
【解析】由题意,设该厂月获利为元,则:
,
当工厂日获利不少于1 000元时,即,
即,
解得:.
故该厂日产量最少生产风衣的件数是10.
故答案为:10
13.(2023·全国·高一单元测试)某校食堂需定期购买大米.已知该食堂每天需用大米0.6t,每吨大米的价格为6000元,大米的保管费用z(单位:元)与购买天数x(单位:天)的关系为(),每次购买大米需支付其他固定费用900元.若要使食堂平均每天所支付的总费用最少,则食堂应______天购买一次大米.
答案:10
【解析】设平均每天所支付的总费用为y元,
则
,
当且仅当,即时取等号,故该食堂10天购买一次大米,才能使平均每天所支付的总费用最少.
故答案为:10.
14.(2023·全国·高一单元测试)美国对中国芯片的技术封锁激发了中国“芯”的研究热潮.某公司研发的,两种芯片都已经获得成功.该公司研发芯片已经耗费资金2千万元,现在准备投入资金进行生产.经市场调查与预测,生产芯片的毛收入(千万元)与投入的资金(千万元)成正比,已知投入1千万元,公司获得毛收入0.25千万元;生产芯片的毛收入(千万元)与投入的资金(千万元)的函数关系为,其图象如图所示.现在公司准备投入40千万元资金同时生产,两种芯片,则可以获得的最大利润是______千万元.(毛收入=营业收入-营业成本)
答案:9
【解析】因为生产芯片的毛收入与投入的资金成正比,所以设,
因为当时,,所以,所以,
即生产芯片的毛收入(千万元)与投入资金(千万元)的函数关系式为.
对于芯片,因为函数的图象过点,,所以,解得,所以,
即生产芯片的毛收入(千万元)与投入的资金(千万元)的函数关系为.
设投入,千万元生产芯片,则投入千万元生产芯片,
则公司所获利润,,
所以当,即时,公司所获利润最大,最大利润为9千万元.
故答案为:
四、解答题
15.(2023·四川·成都市新都香城中学高一阶段练习)某企业研发的一条生产线生产某种产品,据测算,其生产的总成本(万元)与月产量(吨)之间的关系式为:,已知此生产线月产量最大为20吨.
(1)求月产量为多少吨时,生产每吨产品的平均成本最低,并求出这个最低成本;
(2)经过评估,企业定价每吨产品的出厂价为32万元,且最大利润不超过200万元,由该生产线月产量的最大值应为多少?
【解析】(1)设每吨的平均成本为万元,且,
则,
当且仅当,即(吨)时,每吨平均成本最低,且最低成本为12万元.
(2)由题意得,,即,
整理得,解得或,
因为,所以,
所以当最大利润不超过200万元时,年产量的最大值应为10吨.
16.(2023·浙江宁波·高一期中)因新冠肺炎疫情影响,呼吸机成为紧缺商品,某呼吸机生产企业为了提高产品的产量,投入成本500万元安装了一台新设备,并立即进行生产,预计使用该设备前年的材料费、维修费、人工工资等成本共为万元,每年的销售收入为260万元,设使用该设备前n年的总盈利额为万元.
(1)写出关于n的函数关系式,并估计该设备从第几年开始盈利?(利润=销售收入-总成本)
(2)问使用到第几年末,年平均利润最大,最大值为多少?
【解析】(1),
令,解得, 而,
所以该设备第3年开始盈利;
(2),
因为,当且仅当时取到等号,
所以万元,
故在使用第5年末,年平均利润最大为50万元.
17.(2023·北京·牛栏山一中高一期中)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均时间,某地上班族中的成员仅以自驾或公交方式通勤,分析显示:当中的成员自驾时,自驾群体的人均通勤时间为(单位:分钟),.而公交群体的人均通勤时间不受影响,恒为40分钟,试根据上述分析结果回答下列问题:
(1)当时,求该地上班族的人均通勤时间;
(2)当在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?
(3)求该地上班族的人均通勤时间的表达式;讨论的单调性,并说明其实际意义.
【解析】(1)当 时,有 ,公交人群占S的比例为 ,
所以S的人均通勤时间为 (分钟);
(2)解不等式 ,即 ,
化简得 (舍)或者 ,
所以当 时,公交群体的通勤时间小于自驾群体的通勤时间;
(3)公交群体占S的比例为 ,当 时,其平均通勤时间为 ;
当 时, 其平均通勤时间为 ;
,
当 时, 单调递减,当 时, 为开口向上的二次函数,对称轴 ,故单调递增;
综上,(1)人均通勤时间为37(分钟);
(2)当 时,公交群体的通勤时间小于自驾群体的通勤时间;
(3),在 单调递减,在 单调递增.
18.(2023·江苏·常州高级中学高一阶段练习)近年来,某企业每年消耗电费24万元,为了节能减排,决定安装一个可使用15年的太阳能供电设备接入企业内电网,安装这种供电设备的费用(单位:万元)与太阳能电池板的面积(单位:平方米)成正比,比例系数为0.5,为了保证正常用电,安装后采用太阳能和电能互补供电的模式,假设在此模式下,安装后该企业每年消耗的电费C(单位:万元)与安装的这种太阳能电池板的面积x(单位:平方米)之间的函数关系是(,k为常数).记F(单位:万元)为该企业安装这种太阳能供电设备的费用与安装后该企业15年内共消耗的电费之和.
(1)求k的值,并建立F关于x的函数关系式;
(2)当x何值时,F取得最小值?最小值是多少万元?
【解析】(1)将代入C表达式得: ,即 ,
F与x的函数关系式为:, ;
(2)由(1): ,
当且仅当 ,即 时等号成立,
所以当 时,F取最小值,最小值是57.5.
19.(2023·河南南阳·高一期中)为了激励销售人员的积极性,某企业根据业务员的销售额发放奖金(奖金和销售额的单位都为十万元),奖金发放方案要求同时具备下列两个条件:①奖金随销售额的增加而增加;②奖金金额不低于销售额的5%.经测算该企业决定采用函数模型作为奖金发放方案.
(1)若,,此奖金发放方案是否满足条件?并说明理由.
(2)若,要使奖金发放方案满足条件,求实数的取值范围.
【解析】(1)当,时,,
因为在上单调递增,且也在上单调递增,
所以在上单调递增,满足条件①;
若奖金金额不低于销售额的5%,则,
当时,不等式左边右边,不等式不成立,不满足条件②;
故,时不满足条件.
(2)当时,函数,
因为,所以在上单调递增,奖金发放方案满足条件①.
由条件②可知,即在时恒成立,
所以,在时恒成立,
当时,取得最小值,
所以,
所以要使奖金发放方案满足条件,的取值范围为.
时间
50
120
150
种植成本
2600
500
2600
1
2
4
6
8
…
2
4
16
64
256
…
1
4
16
36
64
…
0
1
2
2.585
3
…
-2
-1
0
1
2
3
0.24
0.51
1
2.02
3.98
8.02
年份
2015
2016
2017
2018
投资成本
3
5
9
17
…
年利润
1
2
3
4
…
1
4
9
16
1
分档
户年用水量
综合用水单价/(元)
第一阶梯
(含)
第二阶梯
(含)
第三阶梯
以上
相关试卷
这是一份高一数学常考点微专题提分精练(人教A版必修第一册)微专题16对数函数及其性质(原卷版+解析),共55页。
这是一份高一数学常考点微专题提分精练(人教A版必修第一册)微专题14幂函数与对勾函数(原卷版+解析),共31页。
这是一份高一数学常考点微专题提分精练(人教A版必修第一册)微专题12奇偶性问题(原卷版+解析),共45页。