开学活动
搜索
    上传资料 赚现金

    专题01 任意角及其度量(原卷版+解析版)2023-2024学年高一数学期末复习重点题型方法与技巧(沪教版2020必修第二册)

    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题01 任意角及其度量(原卷版).docx
    • 解析
      专题01 任意角及其度量(解析版).docx
    专题01 任意角及其度量(原卷版)第1页
    专题01 任意角及其度量(原卷版)第2页
    专题01 任意角及其度量(原卷版)第3页
    专题01 任意角及其度量(解析版)第1页
    专题01 任意角及其度量(解析版)第2页
    专题01 任意角及其度量(解析版)第3页
    还剩11页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题01 任意角及其度量(原卷版+解析版)2023-2024学年高一数学期末复习重点题型方法与技巧(沪教版2020必修第二册)

    展开

    这是一份专题01 任意角及其度量(原卷版+解析版)2023-2024学年高一数学期末复习重点题型方法与技巧(沪教版2020必修第二册),文件包含专题01任意角及其度量原卷版docx、专题01任意角及其度量解析版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。

    一、《必修第二册》目录与内容提要
    第6章 三角
    6.1 正弦、余弦、正切、余切:6.1.1锐角的正弦、余弦、正切、余切,6.1.2任意角及其度量,6.1.3任意角的正弦、余弦、正切、余切,6.1.4诱导公式,6.1.5已知正弦、余弦或正切值求角
    6.2 常用三角公式:6.2.1两角和与差的正弦、余弦、正切公式,6.2.2二倍角公式,6.2.3三角变换的应用
    6.3 解三角形:6.3.1正弦定理,6.3.2余弦定理;
    第六章内容提要
    1、正弦、余弦、正切、余切
    弧度制:弧长等于半径的弧所对的圆心角叫做弧度的角.用“弧度”作为单位来度量角的单位制称为弧度制;
    扇形弧长与面积:记扇形的半径为,圆心角为弧度,弧长为,面积为,则有,;
    单位圆:单位圆泛指半径为个单位的圆.本章中,在平面直角坐标系中,特指出以原点为圆心、以为半径的圆为单位圆;
    正弦、余弦、正切及余切的定义:在平面直角坐标系中,将角的顶点与坐标原点重合,始边与轴的正半轴重合,在角的终边上任取异于原点的一点,就有
    ,,(),();
    同角三角公式:,,,;
    诱导公式:(),,,;
    诱导公式,其规律为口诀:奇变偶不变,符号看象限.
    2、常用三角公式
    和角与差角公式:,,

    倍角公式:



    3、解三角形
    正弦定理:;
    余弦定理:,,;
    三角形面积公式:;
    二、考点解读
    1、锐角A的正弦,余弦,正切,余切
    在Rt△ABC中,锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA===;
    在Rt△ABC中,锐角A的邻边与斜边的比叫做∠A的余弦,记作csA,即csA===;
    在Rt△ABC中,锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA===;
    在Rt△ABC中,锐角A的邻边与对边的比叫做∠A的余切,记作ctA,即ctA===;
    锐角A的正弦、余弦、正切与余切也可以都叫做锐角A的三角比;
    2、角的概念的推广
    在小学和初中我们已经知道, 角是具有公共端点的两条射线所组成的图形;
    高中,在集合视角下,角还可以看作是平面上由一条射线绕着其端点
    从初始位置(始边)旋转到终止位置(终边)所形成的图形;
    3、角的分类
    正角,负角,零角;
    一条射线绕端点按逆时针方向旋转所形成的角为正角;其度量值是正的;
    按顺时针方向旋转所形成的角为正角;其度量值是负的;
    特别地,当一条射线没有旋转时(终边与始边重合),我们也认为形成了一个角,称为零角;零角的终边与始边重合;
    4、终边相同的角及其表示
    所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=k·360°+α,k∈Z},或S={β|β=2kπ+α,k∈Z}即任一与角α终边相同的角,都可以表示成角α与整数个周角的和;
    【特别注意】角度制与弧度制可利用180°=π rad进行互化,在同一个式子中,采用的度量制必须一致,不可混用
    5、象限角
    为了便于研究角与其相关的问题,可将角置于平面直角坐标系中;使得角的顶点与坐标原点重合,角的始边在轴的正半轴重合;此时,终边落在第几象限就说这个角时第几象限的角;
    6、角度制
    在平面几何中,周角的360分之一作为1度;用“度”作为单位度量角的单位制叫做角度制;
    7、弧度制
    把弧长等于半径的弧所对的圆心角叫做1弧度的角;用“弧度”作为单位度量角的单位制叫做弧度制;
    8、扇形的弧长、扇形的面积公式
    设扇形所在圆的半径为,圆心角为,所对弧长为,对应面积为,
    则;
    1、角的概念
    (1)定义:角可以看成一条射线绕着它的端点旋转所成的图形.
    (2)分类:按旋转方向不同分为正角、负角、零角;按终边位置不同分为象限角和轴线角;
    (3)相反角:我们把射线OA绕端点O按不同方向旋转相同的量所成的两个角叫做互为相反角.角α的相反角记为-α;
    2、终边相同的角
    所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},或S={β|β=2kπ+α,k∈Z};即任一与角α终边相同的角,都可以表示成角α与整数个周角的和;
    【注意】对终边相同的角的理解:
    (1)α为任意角,“k∈Z”这一条件不能漏;
    (2)k·360°与α中间用“+”连接,k·360°-α可理解成k·360°+(-α);
    (3)当角的始边相同时,相等的角的终边一定相同,而终边相同的角不一定相等.终边相同的角有无数个,它们相差360°的整数倍.终边不同,则表示的角一定不同;
    3、象限角
    把角放在平面直角坐标系中,使角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限;
    【注意】(1)象限角的条件是:角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合.
    (2)若β与α是终边相同的角,则β用α表示为β=2kπ+α,k∈Z;
    (3)象限角
    (4)轴线角
    4、终边相同的角与对称性拓展
    (1)β,α终边相同⇔β=α+2kπ,k∈Z;
    (2)β,α终边关于x轴对称⇔β=-α+2kπ,k∈Z;
    (3)β,α终边关于y轴对称⇔β=π-α+2kπ,k∈Z;
    (4)β,α终边关于原点对称⇔β=π+α+2kπ,k∈Z;
    5、弧度制的定义和公式
    (1)定义:把长度等于半径长的圆弧所对的圆心角叫做1弧度的角,弧度单位用符号rad表示.
    (2)公式
    【注意】1、在应用扇形面积公式S=eq \f(1,2)αR2时,要注意α的单位是“弧度”;
    2、在运用公式时,根据已知条件,选择合适的公式代入;
    3、在弧度制下的扇形面积公式S=eq \f(1,2)lR,与三角形面积公式S=eq \f(1,2)ah(其中h是三角形底边a上的高)的形式较相似,可类比记忆;
    4、由α,R,l,S中任意的两个量可以求出另外的两个量;
    题型1、准确把握角的概念
    例1、(1)下列说法正确的是( )
    A.终边相同的角一定相等 B.钝角一定是第二象限角
    C.第一象限角一定不是负角 D.小于90°的角都是锐角
    【提示】;
    【答案】;
    【解析】;
    (2)下列结论:
    ①锐角都是第一象限角;
    ②第二象限角是钝角;
    ③小于180 °的角是钝角、直角或锐角.
    其中,正确结论的序号为
    【说明】1、判断角的概念问题的关键与技巧:
    (1)关键:正确理解象限角与锐角,直角,钝角,平角,周角等概念;
    (2)技巧:判断命题为真需要证明,而判断命题为假只要举出反例即可;
    2、注意区分以下各角的不同:①锐角α:0°<α<90°;②小于90°的角α:α<90°;③第一象限的角α:{α|k·360°<α<k·360°+90°,k∈Z};(试试:换成用弧度表示);
    题型2、象限角的规范表示
    例2、(1)填充:象限角的表示.
    (2)终边在第一或第三象限的角的集合是 .
    【说明】注意:任意角都是象限角吗?为什么?
    【解析】不是.一些特殊角终边可能落在坐标轴上.如果角的终边在坐标轴上,这个角就不是象限角;
    【建议】试试用弧度制表示;
    题型3、用好终边相同角的表示
    例3、(1)与-468°角的终边相同的角的集合是( )
    A.{α|α=k·360°+456°,k∈Z} B.{α|α=k·360°+252°,k∈Z}
    C.{α|α=k·360°+96°,k∈Z} D.{α|α=k·360°-252°,k∈Z}
    (2)已知α=-1 910°.
    ①把α写成β+k·360°(k∈Z,0°≤β

    相关试卷

    【寒假作业】(沪教版2020)高中数学 高一寒假巩固提升训练 专题03任意角及其度量 (2大考点3种题型)-练习:

    这是一份【寒假作业】(沪教版2020)高中数学 高一寒假巩固提升训练 专题03任意角及其度量 (2大考点3种题型)-练习,文件包含寒假作业沪教版2020高中数学高一寒假巩固提升训练专题03任意角及其度量2大考点3种题型原卷版docx、寒假作业沪教版2020高中数学高一寒假巩固提升训练专题03任意角及其度量2大考点3种题型解析版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。

    【寒假作业】(沪教版2020)高中数学 高一寒假巩固提升训练 专题03任意角及其度量 (2大考点3种题型)-练习.zip:

    这是一份【寒假作业】(沪教版2020)高中数学 高一寒假巩固提升训练 专题03任意角及其度量 (2大考点3种题型)-练习.zip,文件包含寒假作业沪教版2020高中数学高一寒假巩固提升训练专题03任意角及其度量2大考点3种题型原卷版docx、寒假作业沪教版2020高中数学高一寒假巩固提升训练专题03任意角及其度量2大考点3种题型解析版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。

    人教A版 (2019)必修 第一册1.1 集合的概念练习题:

    这是一份人教A版 (2019)必修 第一册1.1 集合的概念练习题,文件包含第01讲集合及其运算解析版docx、第01讲集合及其运算原卷版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。

    英语朗读宝
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map