专题01 绝对值的三种化简方法-2023-2024人教版七年级数学上学期期末复习培优专题
展开【知识点梳理】
1.绝对值的定义
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|
2.绝对值的意义
①代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;
②几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小。
3.绝对值的化简:
类型一、利用数轴化简绝对值
例1.有理数a、b、c在数轴上位置如图,则的值为( ).
A.B.C.0D.
例2.有理数,在数轴上对应的位置如图所示,那么代数式的值是( )
A.-1B.1C.3D.-3
【变式训练1】已知,数、、的大小关系如图所示:化简____.
【变式训练2】有理数a、b、c在数轴上的位置如图.
(1)判断正负,用“>”或“<”填空: , , .
(2)化简:
【变式训练3】有理数,在数轴上的对应点如图所示:
(1)填空:______0;______0;______0;(填“<”、“>”或“=”)
(2)化简:
【变式训练4】有理数a、b、c在数轴上的位置如图:
(1)用“>”或“<”填空a_____0,b_____0,c﹣b______0,ab_____0.
(2)化简:|a|+|b+c|﹣|c﹣a|.
类型二、利用几何意义化简绝对值
例1.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索
(1)求|5-(-2)|=________;
(2)同样道理|x+1008|=|x-1005|表示数轴上有理数x所对点到-1008和1005所对的两点距离相等,则x=________;
(3)类似的|x+5|+|x-2|表示数轴上有理数x所对点到-5和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|x+5|+|x-2|=7,这样的整数是__________.
(4)由以上探索猜想对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有,写出最小值;如果没有,说明理由.
【变式训练1】阅读下面的材料:
点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为∣AB∣,当A、B两点中有一点在原点时,不妨设点A在原点,如图1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;当A、B两点都不在原点时:
①如图2,点A、B都在原点的右边:
∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=b-a=∣a-b∣;
②如图3,点A、B都在原点的左边:
∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=-b-(-a)=∣a-b∣;
③如图4,点A、B在原点的两边:
∣AB∣=∣OA∣+∣OB∣=∣a∣+∣b∣=a+(-b)=∣a-b∣,
综上,数轴上A、B两点之间的距离∣AB∣=∣a-b∣.
回答下列问题:
(1)数轴上表示2和5的两点之间的距离是_________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是___________;
(2)数轴上表示x和-1的两点A和B之间的距离是________,如果∣AB∣=2, 那么x为__________.
(3)当代数式∣x+1∣+∣x-2∣取最小值时,相应的x的取值范围是__________.
【变式训练2】结合数轴与绝对值的知识回答下列问题:
(1)数轴上表示4和1的两点之间的距离是 ;数轴上表示﹣3和2两点之间的距离是 ;一般地,数轴上表示数m和数n的两点之间的距离可以表示为|m﹣n|.那么,数轴上表示数x与5两点之间的距离可以表示为 ,表示数y与﹣1两点之间的距离可以表示为 .
(2)如果表示数a和﹣2的两点之间的距离是3,那么a= ;若数轴上表示数a的点位于﹣4与2之间,求|a+4|+|a﹣2|的值;
(3)当a= 时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值是 .
【变式训练3】(问题提出)的最小值是多少?
(阅读理解)为了解决这个问题,我们先从最简单的情况入手.的几何意义是这个数在数轴上对应的点到原点的距离,那么可以看作这个数在数轴上对应的点到1的距离;就可以看作这个数在数轴上对应的点到1和2两个点的距离之和.下面我们结合数轴研究的最小值.
我们先看表示的点可能的3种情况,如图所示:
(1)如图①,在1的左边,从图中很明显可以看出到1和2的距离之和大于1.
(2)如图②,在1,2之间(包括在1,2上),看出到1和2的距离之和等于1.
(3)如图③,在2的右边,从图中很明显可以看出到1和2的距离之和大于1.因此,我们可以得出结论:当在1,2之间(包括在1,2上)时,有最小值1.
(问题解决)
(1)的几何意义是 ,请你结合数轴探究:的最小值是 .
(2)请你结合图④探究的最小值是 ,由此可以得出为 .
(3)的最小值为 .
(4)的最小值为 .
(拓展应用)如图,已知使到-1,2的距离之和小于4,请直接写出的取值范围是 .
类型三、分类讨论法化简绝对值
例1.化简:.
【变式训练1】若,则的值为_________.
【变式训练2】(1)数学小组遇到这样一个问题:若a,b均不为零,求的值.
请补充以下解答过程(直接填空)
①当两个字母a,b中有2个正,0个负时,x= ;②当两个字母a,b中有1个正,1个负时,x= ;③当两个字母a,b中有0个正,2个负时,x= ;综上,当a,b均不为零,求x的值为 .
(2)请仿照解答过程完成下列问题:
①若a,b,c均不为零,求的值.
②若a,b,c均不为零,且a+b+c=0,直接写出代数式的值.
人教版七年级数学上册专题01绝对值化简的四种考法(原卷版+解析): 这是一份人教版七年级数学上册专题01绝对值化简的四种考法(原卷版+解析),共24页。
人教版七年级数学上册同步压轴题专题01绝对值的三种化简方法(学生版+解析): 这是一份人教版七年级数学上册同步压轴题专题01绝对值的三种化简方法(学生版+解析),共15页。
专题01 绝对值化简的四种考法-七年级数学上册压轴题攻略(人教版): 这是一份专题01 绝对值化简的四种考法-七年级数学上册压轴题攻略(人教版),文件包含专题01绝对值化简的四种考法原卷版docx、专题01绝对值化简的四种考法解析版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。