还剩8页未读,
继续阅读
所属成套资源:2018-2021全国数学中考试券及答案
成套系列资料,整套一键下载
- 2024年湖南湘西中考数学试题及答案 试卷 0 次下载
- 2024年湖南益阳中考数学试题及答案 试卷 0 次下载
- 2024年贵州遵义中考数学真题及答案 试卷 1 次下载
- 2024年贵州中考数学真题及答案 试卷 0 次下载
- 2024年贵州铜仁中考数学真题及答案 试卷 0 次下载
2024年四川广元中考数学试题及答案
展开
这是一份2024年四川广元中考数学试题及答案,共11页。
3.考生必须在答题卡上答题,写在试卷上的答案无效.选择题必须使用2B铅笔填涂答案,非选择题必须使用0.5毫米黑色墨迹签字笔答题.
4.考试结束,将答题卡和试卷一并交回.
第Ⅰ卷 选择题(共30分)
一、选择题(每小题给出的四个选项中,只有一个符合题意.每小题3分,共30分)
1. 将在数轴上对应的点向右平移2个单位,则此时该点对应的数是( )
A. B. 1C. D. 3
2. 下列计算正确的是( )
A. B. C. D.
3. 一个几何体如图水平放置,它的俯视图是( )
A. B. C. D.
4. 在“五·四”文艺晚会节目评选中,某班选送的节目得分如下:91,96,95,92,94,95,95,分析这组数据,下列说法错误的是( )
A. 中位数是95B. 方差是3C. 众数是95D. 平均数是94
5. 如图,已知四边形是的内接四边形,为延长线上一点,,则等于( )
A. B. C. D.
6. 如果单项式与单项式的和仍是一个单项式,则在平面直角坐标系中点在( )
A 第一象限B. 第二象限C. 第三象限D. 第四象限
7. 如图,将绕点A顺时针旋转得到,点B,C的对应点分别为点D,E,连接,点D恰好落在线段上,若,,则的长为( )
A. B. C. 2D.
8. 我市把提升城市园林绿化水平作为推进城市更新行动的有效抓手,从2023年开始通过拆违建绿、见缝插绿等方式在全域打造多个小而美的“口袋公园”.现需要购买A、B两种绿植,已知A种绿植单价是B种绿植单价的3倍,用6750元购买的A种绿植比用3000元购买的B种绿植少50株.设B种绿植单价是x元,则可列方程是( )
A. B.
C. D.
9. 如图①,在中,,点P从点A出发沿A→C→B以1的速度匀速运动至点B,图②是点P运动时,的面积随时间x(s)变化的函数图象,则该三角形的斜边的长为( )
A. 5B. 7C. D.
10. 如图,已知抛物线过点与x轴交点的横坐标分别为,,且,,则下列结论:
①;
②方程有两个不相等的实数根;
③;
④;
⑤.其中正确的结论有( )
A. 1个B. 2个C. 3个D. 4个
第Ⅱ卷 非选择题(共120分)
二、填空题(把正确答案直接写在答题卡对应题目的横线上,每小题4分,共24分)
11. 分解因式:___________________________________.
12. 2023年10月诺贝尔物理学奖授予三位“追光”科学家,以表彰他们“为研究物质中的电子动力学而产生阿秒光脉冲的实验方法”.什么是阿秒?1阿秒是秒,也就是十亿分之一秒的十亿分之一.目前世界上最短的单个阿秒光学脉冲是43阿秒.将43阿秒用科学记数法表示为______秒.
13. 点F是正五边形边的中点,连接并延长与延长线交于点G,则的度数为______.
14. 若点满足,则称点Q为“美好点”,写出一个“美好点”的坐标______.
15. 已知与的图象交于点,点B为y轴上一点,将沿翻折,使点B恰好落在上点C处,则B点坐标为______.
16. 如图,在中,,,则的最大值为______.
三、解答题(要求写出必要的解答步骤或证明过程.共96分)
17. 计算:.
18. 先化简,再求值:,其中a,b满足.
19. 如图,已知矩形.
(1)尺规作图:作对角线的垂直平分线,交于点E,交于点F;(不写作法,保留作图痕迹)
(2)连接.求证:四边形菱形.
20. 广元市开展“蜀道少年”选拔活动,旨在让更多的青少年关注蜀道、了解蜀道、热爱蜀道、宣传蜀道,进一步挖掘和传承古蜀道文化、普及蜀道知识.为此某校开展了“蜀道文化知识竞赛”活动,并从全校学生中抽取了若干学生的竞赛成绩进行整理、描述和分析(竞赛成绩用x表示,总分为100分,共分成五个等级:A:;B:;C:;D:;E:).并绘制了如下尚不完整的统计图.
抽取学生成绩等级人数统计表
其中扇形图中C等级区域所对应的扇形的圆心角的度数是.
(1)样本容量为______,______;
(2)全校1200名学生中,请估计A等级的人数;
(3)全校有5名学生得满分,七年级1人,八年级2人,九年级2人,从这5名学生中任意选择两人在国旗下分享自己与蜀道的故事,请你用画树状图或列表的方法,求这两人来自同一个年级的概率.
21. 小明从科普读物中了解到,光从真空射入介质发生折射时,入射角的正弦值与折射角的正弦值的比值叫做介质的“绝对折射率”,简称“折射率”.它表示光在介质中传播时,介质对光作用的一种特征.
(1)若光从真空射入某介质,入射角为,折射角为,且,,求该介质的折射率;
(2)现有一块与(1)中折射率相同长方体介质,如图①所示,点A,B,C,D分别是长方体棱的中点,若光线经真空从矩形对角线交点O处射入,其折射光线恰好从点C处射出.如图②,已知,,求截面的面积.
22. 近年来,中国传统服饰备受大家的青睐,走上国际时装周舞台,大放异彩.某服装店直接从工厂购进长、短两款传统服饰进行销售,进货价和销售价如下表:
(1)该服装店第一次用4300元购进长、短两款服装共50件,求两款服装分别购进的件数;
(2)第一次购进的两款服装售完后,该服装店计划再次购进长、短两款服装共200件(进货价和销售价都不变),且第二次进货总价不高于16800元.服装店这次应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?
23. 如图,已知反比例函数和一次函数图象相交于点,两点,O为坐标原点,连接,.
(1)求与的解析式;
(2)当时,请结合图象直接写出自变量x的取值范围;
(3)求的面积.
24. 如图,在中,,,经过A、C两点,交于点D,的延长线交于点F,交于点E.
(1)求证:为的切线;
(2)若,,求的半径.
25. 数学实验,能增加学习数学的乐趣,还能经历知识“再创造”的过程,更是培养动手能力,创新能力的一种手段.小强在学习《相似》一章中对“直角三角形斜边上作高”这一基本图形(如图1)产生了如下问题,请同学们帮他解决.
在中,点为边上一点,连接.
(1)初步探究
如图2,若,求证:;
(2)尝试应用
如图3,在(1)的条件下,若点为中点,,求的长;
(3)创新提升
如图4,点为中点,连接,若,,,求长.
26. 在平面直角坐标系xOy中,已知抛物线F:经过点,与y轴交于点.
(1)求抛物线的函数表达式;
(2)在直线上方抛物线上有一动点C,连接交于点D,求的最大值及此时点C的坐标;
(3)作抛物线F关于直线上一点的对称图象,抛物线F与只有一个公共点E(点E在y轴右侧),G为直线上一点,H为抛物线对称轴上一点,若以B,E,G,H为顶点的四边形是平行四边形,求G点坐标.
参考答案
说明:1.全卷满分150分,考试时间120分钟.
2.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共三个大题26个小题.
3.考生必须在答题卡上答题,写在试卷上的答案无效.选择题必须使用2B铅笔填涂答案,非选择题必须使用0.5毫米黑色墨迹签字笔答题.
4.考试结束,将答题卡和试卷一并交回.
第Ⅰ卷 选择题(共30分)
一、选择题(每小题给出的四个选项中,只有一个符合题意.每小题3分,共30分)
【1题答案】
【答案】B
【2题答案】
【答案】D
【3题答案】
【答案】C
【4题答案】
【答案】B
【5题答案】
【答案】A
【6题答案】
【答案】D
【7题答案】
【答案】A
【8题答案】
【答案】C
【9题答案】
【答案】A
【10题答案】
【答案】C
第Ⅱ卷 非选择题(共120分)
二、填空题(把正确答案直接写在答题卡对应题目的横线上,每小题4分,共24分)
【11题答案】
【答案】##
【12题答案】
【答案】
【13题答案】
【答案】##18度
【14题答案】
【答案】(答案不唯一)
【15题答案】
【答案】
【16题答案】
【答案】
三、解答题(要求写出必要的解答步骤或证明过程.共96分)
【17题答案】
【答案】
【18题答案】
【答案】,
【19题答案】
【答案】(1)见解析;
(2)见解析.
【20题答案】
【答案】(1)90,15;
(2)200; (3).
【21题答案】
【答案】(1);
(2).
【22题答案】
【答案】(1)长款服装购进30件,短款服装购进20件;
(2)当购进120件短款服装,80件长款服装时有最大利润,最大利润是4800元.
【23题答案】
【答案】(1);
(2)或
(3)
【24题答案】
【答案】(1)证明见解析;
(2).
【25题答案】
【答案】(1)证明见解析
(2)
(3)
【26题答案】
【答案】(1);
(2)最大值为,C的坐标为;
(3)点G的坐标为,,.
等级
A
B
C
D
E
人数
m
27
30
12
6
价格/类别
短款
长款
进货价(元/件)
80
90
销售价(元/件)
100
120
3.考生必须在答题卡上答题,写在试卷上的答案无效.选择题必须使用2B铅笔填涂答案,非选择题必须使用0.5毫米黑色墨迹签字笔答题.
4.考试结束,将答题卡和试卷一并交回.
第Ⅰ卷 选择题(共30分)
一、选择题(每小题给出的四个选项中,只有一个符合题意.每小题3分,共30分)
1. 将在数轴上对应的点向右平移2个单位,则此时该点对应的数是( )
A. B. 1C. D. 3
2. 下列计算正确的是( )
A. B. C. D.
3. 一个几何体如图水平放置,它的俯视图是( )
A. B. C. D.
4. 在“五·四”文艺晚会节目评选中,某班选送的节目得分如下:91,96,95,92,94,95,95,分析这组数据,下列说法错误的是( )
A. 中位数是95B. 方差是3C. 众数是95D. 平均数是94
5. 如图,已知四边形是的内接四边形,为延长线上一点,,则等于( )
A. B. C. D.
6. 如果单项式与单项式的和仍是一个单项式,则在平面直角坐标系中点在( )
A 第一象限B. 第二象限C. 第三象限D. 第四象限
7. 如图,将绕点A顺时针旋转得到,点B,C的对应点分别为点D,E,连接,点D恰好落在线段上,若,,则的长为( )
A. B. C. 2D.
8. 我市把提升城市园林绿化水平作为推进城市更新行动的有效抓手,从2023年开始通过拆违建绿、见缝插绿等方式在全域打造多个小而美的“口袋公园”.现需要购买A、B两种绿植,已知A种绿植单价是B种绿植单价的3倍,用6750元购买的A种绿植比用3000元购买的B种绿植少50株.设B种绿植单价是x元,则可列方程是( )
A. B.
C. D.
9. 如图①,在中,,点P从点A出发沿A→C→B以1的速度匀速运动至点B,图②是点P运动时,的面积随时间x(s)变化的函数图象,则该三角形的斜边的长为( )
A. 5B. 7C. D.
10. 如图,已知抛物线过点与x轴交点的横坐标分别为,,且,,则下列结论:
①;
②方程有两个不相等的实数根;
③;
④;
⑤.其中正确的结论有( )
A. 1个B. 2个C. 3个D. 4个
第Ⅱ卷 非选择题(共120分)
二、填空题(把正确答案直接写在答题卡对应题目的横线上,每小题4分,共24分)
11. 分解因式:___________________________________.
12. 2023年10月诺贝尔物理学奖授予三位“追光”科学家,以表彰他们“为研究物质中的电子动力学而产生阿秒光脉冲的实验方法”.什么是阿秒?1阿秒是秒,也就是十亿分之一秒的十亿分之一.目前世界上最短的单个阿秒光学脉冲是43阿秒.将43阿秒用科学记数法表示为______秒.
13. 点F是正五边形边的中点,连接并延长与延长线交于点G,则的度数为______.
14. 若点满足,则称点Q为“美好点”,写出一个“美好点”的坐标______.
15. 已知与的图象交于点,点B为y轴上一点,将沿翻折,使点B恰好落在上点C处,则B点坐标为______.
16. 如图,在中,,,则的最大值为______.
三、解答题(要求写出必要的解答步骤或证明过程.共96分)
17. 计算:.
18. 先化简,再求值:,其中a,b满足.
19. 如图,已知矩形.
(1)尺规作图:作对角线的垂直平分线,交于点E,交于点F;(不写作法,保留作图痕迹)
(2)连接.求证:四边形菱形.
20. 广元市开展“蜀道少年”选拔活动,旨在让更多的青少年关注蜀道、了解蜀道、热爱蜀道、宣传蜀道,进一步挖掘和传承古蜀道文化、普及蜀道知识.为此某校开展了“蜀道文化知识竞赛”活动,并从全校学生中抽取了若干学生的竞赛成绩进行整理、描述和分析(竞赛成绩用x表示,总分为100分,共分成五个等级:A:;B:;C:;D:;E:).并绘制了如下尚不完整的统计图.
抽取学生成绩等级人数统计表
其中扇形图中C等级区域所对应的扇形的圆心角的度数是.
(1)样本容量为______,______;
(2)全校1200名学生中,请估计A等级的人数;
(3)全校有5名学生得满分,七年级1人,八年级2人,九年级2人,从这5名学生中任意选择两人在国旗下分享自己与蜀道的故事,请你用画树状图或列表的方法,求这两人来自同一个年级的概率.
21. 小明从科普读物中了解到,光从真空射入介质发生折射时,入射角的正弦值与折射角的正弦值的比值叫做介质的“绝对折射率”,简称“折射率”.它表示光在介质中传播时,介质对光作用的一种特征.
(1)若光从真空射入某介质,入射角为,折射角为,且,,求该介质的折射率;
(2)现有一块与(1)中折射率相同长方体介质,如图①所示,点A,B,C,D分别是长方体棱的中点,若光线经真空从矩形对角线交点O处射入,其折射光线恰好从点C处射出.如图②,已知,,求截面的面积.
22. 近年来,中国传统服饰备受大家的青睐,走上国际时装周舞台,大放异彩.某服装店直接从工厂购进长、短两款传统服饰进行销售,进货价和销售价如下表:
(1)该服装店第一次用4300元购进长、短两款服装共50件,求两款服装分别购进的件数;
(2)第一次购进的两款服装售完后,该服装店计划再次购进长、短两款服装共200件(进货价和销售价都不变),且第二次进货总价不高于16800元.服装店这次应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?
23. 如图,已知反比例函数和一次函数图象相交于点,两点,O为坐标原点,连接,.
(1)求与的解析式;
(2)当时,请结合图象直接写出自变量x的取值范围;
(3)求的面积.
24. 如图,在中,,,经过A、C两点,交于点D,的延长线交于点F,交于点E.
(1)求证:为的切线;
(2)若,,求的半径.
25. 数学实验,能增加学习数学的乐趣,还能经历知识“再创造”的过程,更是培养动手能力,创新能力的一种手段.小强在学习《相似》一章中对“直角三角形斜边上作高”这一基本图形(如图1)产生了如下问题,请同学们帮他解决.
在中,点为边上一点,连接.
(1)初步探究
如图2,若,求证:;
(2)尝试应用
如图3,在(1)的条件下,若点为中点,,求的长;
(3)创新提升
如图4,点为中点,连接,若,,,求长.
26. 在平面直角坐标系xOy中,已知抛物线F:经过点,与y轴交于点.
(1)求抛物线的函数表达式;
(2)在直线上方抛物线上有一动点C,连接交于点D,求的最大值及此时点C的坐标;
(3)作抛物线F关于直线上一点的对称图象,抛物线F与只有一个公共点E(点E在y轴右侧),G为直线上一点,H为抛物线对称轴上一点,若以B,E,G,H为顶点的四边形是平行四边形,求G点坐标.
参考答案
说明:1.全卷满分150分,考试时间120分钟.
2.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共三个大题26个小题.
3.考生必须在答题卡上答题,写在试卷上的答案无效.选择题必须使用2B铅笔填涂答案,非选择题必须使用0.5毫米黑色墨迹签字笔答题.
4.考试结束,将答题卡和试卷一并交回.
第Ⅰ卷 选择题(共30分)
一、选择题(每小题给出的四个选项中,只有一个符合题意.每小题3分,共30分)
【1题答案】
【答案】B
【2题答案】
【答案】D
【3题答案】
【答案】C
【4题答案】
【答案】B
【5题答案】
【答案】A
【6题答案】
【答案】D
【7题答案】
【答案】A
【8题答案】
【答案】C
【9题答案】
【答案】A
【10题答案】
【答案】C
第Ⅱ卷 非选择题(共120分)
二、填空题(把正确答案直接写在答题卡对应题目的横线上,每小题4分,共24分)
【11题答案】
【答案】##
【12题答案】
【答案】
【13题答案】
【答案】##18度
【14题答案】
【答案】(答案不唯一)
【15题答案】
【答案】
【16题答案】
【答案】
三、解答题(要求写出必要的解答步骤或证明过程.共96分)
【17题答案】
【答案】
【18题答案】
【答案】,
【19题答案】
【答案】(1)见解析;
(2)见解析.
【20题答案】
【答案】(1)90,15;
(2)200; (3).
【21题答案】
【答案】(1);
(2).
【22题答案】
【答案】(1)长款服装购进30件,短款服装购进20件;
(2)当购进120件短款服装,80件长款服装时有最大利润,最大利润是4800元.
【23题答案】
【答案】(1);
(2)或
(3)
【24题答案】
【答案】(1)证明见解析;
(2).
【25题答案】
【答案】(1)证明见解析
(2)
(3)
【26题答案】
【答案】(1);
(2)最大值为,C的坐标为;
(3)点G的坐标为,,.
等级
A
B
C
D
E
人数
m
27
30
12
6
价格/类别
短款
长款
进货价(元/件)
80
90
销售价(元/件)
100
120
相关试卷
2024年四川省广元市中考数学试题(图片版,含答案): 这是一份2024年四川省广元市中考数学试题(图片版,含答案),共14页。
2024年四川省广元市中考数学试题: 这是一份2024年四川省广元市中考数学试题,共14页。
2024年四川省广元市中考真题数学试题: 这是一份2024年四川省广元市中考真题数学试题,共12页。