所属成套资源:中考数学第一轮专题复习真题分点透练(全国通用)(原卷版+解析)
中考数学第一轮专题复习真题分点透练(全国通用)第十五讲全等三角形(原卷版+解析)
展开
这是一份中考数学第一轮专题复习真题分点透练(全国通用)第十五讲全等三角形(原卷版+解析),共19页。
1.(2021•重庆)如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是( )
A.AB=DEB.∠A=∠DC.AC=DFD.AC∥FD
2.(2022•湖北)如图,已知AB∥DE,AB=DE,请你添加一个条件 ,使△ABC≌△DEF.
3.(2022•乐山)如图,B是线段AC的中点,AD∥BE,BD∥CE.求证:△ABD≌△BCE.
类型二 轴对称型
4.(2022•金华)如图,AC与BD相交于点O,OA=OD,OB=OC,不添加辅助线,判定△ABO≌△DCO的依据是( )
A.SSSB.SASC.AASD.HL
5.(2020•永州)如图,已知AB=DC,∠ABC=∠DCB,能直接判断△ABC≌△DCB的方法是( )
A.SASB.AASC.SSSD.ASA
6.(2020•甘孜州)如图,等腰△ABC中,点D,E分别在腰AB,AC上,添加下列条件,不能判定△ABE≌△ACD的是( )
AD=AE B.BE=CD C.∠ADC=∠AEB D.∠DCB=∠EBC
7.(2021•济宁)如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件 ,使△ABC≌△ADC.
8.(2022•广州)如图,点D,E在△ABC的边BC上,∠B=∠C,BD=CE,求证:△ABD≌△ACE.
9.(2020•柳州)如图,已知OC平分∠MON,点A、B分别在射线OM,ON上,且OA=OB.
求证:△AOC≌△BOC.
类型三 旋转型
考向1 共顶点旋转
10.(2021•哈尔滨)如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为( )
A.30°B.25°C.35°D.65°
11.(2021•齐齐哈尔)如图,AC=AD,∠1=∠2,要使△ABC≌△AED,应添加的条件是 .(只需写出一个条件即可)
12.(2022•宁夏)如图,AC,BD相交于点O,OB=OD,要使△AOB≌△COD,添加一个条件是 .(只写一个)
13.(2022•牡丹江)如图,CA=CD,∠ACD=∠BCE,请添加一个条件 ,使△ABC≌△DEC.
14.(2021•宜宾)如图,已知OA=OC,OB=OD,∠AOC=∠BOD.
求证:△AOB≌△COD.
考向2 不共顶点旋转
1.(2021•台湾)已知△ABC与△DEF全等,A、B、C的对应点分别为D、E、F,且E点在AC上,B、F、C、D四点共线,如图所示.若∠A=40°,∠CED=35°,则下列叙述何者正确?( )
A.EF=EC,AE=FCB.EF=EC,AE≠FC
C.EF≠EC,AE=FCD.EF≠EC,AE≠FC
类型四 三垂直型
16.(2022•益阳)如图,在Rt△ABC中,∠B=90°,CD∥AB,DE⊥AC于点E,且CE=AB.求证:△CED≌△ABC.
17.(2022•铜仁市)如图,点C在BD上,AB⊥BD,ED⊥BD,AC⊥CE,AB=CD.求证:△ABC≌△CDE.
其他类型
18.(2021•陕西)如图,BD∥AC,BD=BC,点E在BC上,且BE=AC.求证:∠D=∠ABC.
19.(2020•温州)如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D依次在同一直线上,且AB∥DE.
(1)求证:△ABC≌△DCE.
(2)连接AE,当BC=5,AC=12时,求AE的长.
命题点2 全等三角形的实际应用
20.(2021•盐城)工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB的两边OA、OB上分别截取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C、D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.这里构造全等三角形的依据是( )
A.SASB.ASAC.AASD.SSS
21.(2021•柳州)如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB,连接DE,那么量出DE的长就是A、B的距离,为什么?请结合解题过程,完成本题的证明.
证明:在△DEC和△ABC中,
,
∴△DEC≌△ABC(SAS),
∴ .
第十五讲 全等三角形
命题点1 全等三角形的判定与性质
类型一 平移型
1.(2021•重庆)如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是( )
A.AB=DEB.∠A=∠DC.AC=DFD.AC∥FD
【答案】C
【解答】解:∵BF=EC,
∴BF+FC=EC+FC,
∴BC=EF,
又∵∠B=∠E,
∴当添加条件AB=DE时,△ABC≌△DEF(SAS),故选项A不符合题意;
当添加条件∠A=∠D时,△ABC≌△DEF(AAS),故选项B不符合题意;
当添加条件AC=DF时,无法判断△ABC≌△DEF,故选项C符合题意;
当添加条件AC∥FD时,则∠ACB=∠DFE,故△ABC≌△DEF(ASA),故选项D不符合题意;
故选:C.
2.(2022•湖北)如图,已知AB∥DE,AB=DE,请你添加一个条件 ,使△ABC≌△DEF.
【答案】∠A=∠D
【解答】解:添加条件:∠A=∠D.
∵AB∥DE,
∴∠B=∠DEC,
在△ABC和△DEF中,
,
∴△ABC≌△DEF(ASA),
故答案为:∠A=∠D.(答案不唯一)
3.(2022•乐山)如图,B是线段AC的中点,AD∥BE,BD∥CE.求证:△ABD≌△BCE.
【解答】证明:∵点B为线段AC的中点,
∴AB=BC,
∵AD∥BE,
∴∠A=∠EBC,
∵BD∥CE,
∴∠C=∠DBA,
在△ABD与△BCE中,
,
∴△ABD≌△BCE.(ASA).
类型二 轴对称型
4.(2022•金华)如图,AC与BD相交于点O,OA=OD,OB=OC,不添加辅助线,判定△ABO≌△DCO的依据是( )
A.SSSB.SASC.AASD.HL
【答案】B
【解答】解:在△AOB和△DOC中,
,
∴△AOB≌△DOC(SAS),
故选:B.
5.(2020•永州)如图,已知AB=DC,∠ABC=∠DCB,能直接判断△ABC≌△DCB的方法是( )
A.SASB.AASC.SSSD.ASA
【答案】A
【解答】解:∵AB=DC,∠ABC=∠DCB,BC=CB,
∴△ABC≌△DCB(SAS),
故选:A.
6.(2020•甘孜州)如图,等腰△ABC中,点D,E分别在腰AB,AC上,添加下列条件,不能判定△ABE≌△ACD的是( )
AD=AE B.BE=CD C.∠ADC=∠AEB D.∠DCB=∠EBC
【答案】B
【解答】解:∵△ABC为等腰三角形,
∴∠ABC=∠ACB,AB=AC,
∴当AD=AE时,则根据“SAS”可判断△ABE≌△ACD;
当∠AEB=∠ADC,则根据“AAS”可判断△ABE≌△ACD;
当∠DCB=∠EBC,则∠ABE=∠ACD,根据“ASA”可判断△ABE≌△ACD.
故选:B.
7.(2021•济宁)如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件 ,使△ABC≌△ADC.
【答案】AD=AB(答案不唯一)
【解答】解:添加的条件是AD=AB,
理由是:在△ABC和△ADC中
,
∴△ABC≌△ADC(SAS),
故答案为:AD=AB(答案不唯一).
8.(2022•广州)如图,点D,E在△ABC的边BC上,∠B=∠C,BD=CE,求证:△ABD≌△ACE.
【解答】证明:∵∠B=∠C,
∴AB=AC,
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS).
9.(2020•柳州)如图,已知OC平分∠MON,点A、B分别在射线OM,ON上,且OA=OB.
求证:△AOC≌△BOC.
【解答】证明:∵OC平分∠MON,
∴∠AOC=∠BOC,
在△AOC和△BOC中,
,
∴△AOC≌△BOC(SAS).
类型三 旋转型
考向1 共顶点旋转
10.(2021•哈尔滨)如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为( )
A.30°B.25°C.35°D.65°
【答案】B
【解答】解:∵△ABC≌△DEC,
∴∠ACB=∠DCE,
∵∠BCE=65°,
∴∠ACD=∠BCE=65°,
∵AF⊥CD,
∴∠AFC=90°,
∴∠CAF+∠ACD=90°,
∴∠CAF=90°﹣65°=25°,
故选:B.
11.(2021•齐齐哈尔)如图,AC=AD,∠1=∠2,要使△ABC≌△AED,应添加的条件是 .(只需写出一个条件即可)
【答案】∠B=∠E或∠C=∠D或AB=AE
【解答】解:∵∠1=∠2,
∴∠1+∠BAD=∠2+∠BAD,
即∠BAC=∠EAD,
∵AC=AD,
∴当添加∠B=∠E时,可根据“AAS”判断△ABC≌△AED;
当添加∠C=∠D时,可根据“ASA”判断△ABC≌△AED;
当添加AB=AE时,可根据“SAS”判断△ABC≌△AED.
故答案为∠B=∠E或∠C=∠D或AB=AE.
12.(2022•宁夏)如图,AC,BD相交于点O,OB=OD,要使△AOB≌△COD,添加一个条件是 .(只写一个)
【答案】OA=OC(答案不唯一)
【解答】解:∵OB=OD,∠AOB=∠COD,OA=OC,
∴△AOB≌△COD(SAS),
∴要使△AOB≌△COD,添加一个条件是OA=OC,
故答案为:OA=OC(答案不唯一).
13.(2022•牡丹江)如图,CA=CD,∠ACD=∠BCE,请添加一个条件 ,使△ABC≌△DEC.
【答案】CB=CE(答案不唯一)
【解答】解:∵∠ACD=∠BCE,
∴∠ACD+∠ACE=∠BCE+∠ACE,
∴∠DCE=∠ACB,
∵CA=CD,CB=CE,
∴△ABC≌△DEC(SAS),
故答案为:CB=CE(答案不唯一).
14.(2021•宜宾)如图,已知OA=OC,OB=OD,∠AOC=∠BOD.
求证:△AOB≌△COD.
【解答】证明:∵∠AOC=∠BOD,
∴∠AOC﹣∠AOD=∠BOD﹣∠AOD,
即∠COD=∠AOB,
在△AOB和△COD中,
,
∴△AOB≌△COD(SAS
考向2 不共顶点旋转
1.(2021•台湾)已知△ABC与△DEF全等,A、B、C的对应点分别为D、E、F,且E点在AC上,B、F、C、D四点共线,如图所示.若∠A=40°,∠CED=35°,则下列叙述何者正确?( )
A.EF=EC,AE=FCB.EF=EC,AE≠FC
C.EF≠EC,AE=FCD.EF≠EC,AE≠FC
【答案】B
【解答】解:∵△ABC≌△DEF,
∴∠A=∠D=40°,AC=DF,∠ACB=∠DFE,
∵∠ACB=∠DFE,
∴EF=EC.
∵∠CED=35°,∠D=40°,
∴∠D>∠CED.
∴CE>CD.
∵AC=DF,
∴AC﹣CE<DF﹣CD,即AE<FC.
∴AE≠FC.
∴EF=EC,AE≠FC.
故选:B.
类型四 三垂直型
16.(2022•益阳)如图,在Rt△ABC中,∠B=90°,CD∥AB,DE⊥AC于点E,且CE=AB.求证:△CED≌△ABC.
【解答】证明:∵DE⊥AC,∠B=90°,
∴∠DEC=∠B=90°,
∵CD∥AB,
∴∠A=∠DCE,
在△CED和△ABC中,
,
∴△CED≌△ABC(ASA).
17.(2022•铜仁市)如图,点C在BD上,AB⊥BD,ED⊥BD,AC⊥CE,AB=CD.求证:△ABC≌△CDE.
【解答】证明:∵AB⊥BD,ED⊥BD,AC⊥CE,
∴∠B=∠D=∠ACE=90°,
∴∠DCE+∠DEC=90°,∠BCA+∠DCE=90°,
∴∠BCA=∠DEC,
在△ABC和△CDE中,
,
∴△ABC≌△CDE(AAS).
其他类型
18.(2021•陕西)如图,BD∥AC,BD=BC,点E在BC上,且BE=AC.求证:∠D=∠ABC.
【答案】略
【解答】证明:∵BD∥AC,
∴∠ACB=∠EBD,
在△ABC和△EDB中,
,
∴△ABC≌△EDB(SAS),
∴∠ABC=∠D.
19.(2020•温州)如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D依次在同一直线上,且AB∥DE.
(1)求证:△ABC≌△DCE.
(2)连接AE,当BC=5,AC=12时,求AE的长.
【答案】(1)略 (2)13
【解答】证明:(1)∵AB∥DE,
∴∠BAC=∠D,
又∵∠B=∠DCE=90°,AC=DE,
∴△ABC≌△DCE(AAS);
(2)∵△ABC≌△DCE,
∴CE=BC=5,
∵∠ACE=90°,
∴AE===13.
命题点2 全等三角形的实际应用
20.(2021•盐城)工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB的两边OA、OB上分别截取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C、D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.这里构造全等三角形的依据是( )
A.SASB.ASAC.AASD.SSS
【答案】D
【解答】解:在△COM和△DOM中
,
所以△COM≌△DOM(SSS),
所以∠COM=∠DOM,
即OM是∠AOB的平分线,
故选:D.
21.(2021•柳州)如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB,连接DE,那么量出DE的长就是A、B的距离,为什么?请结合解题过程,完成本题的证明.
证明:在△DEC和△ABC中,
,
∴△DEC≌△ABC(SAS),
∴ .
【答案】CA,∠DCE=∠ACB,CB,DE=AB.
【解答】证明:在△DEC和△ABC中,
,
∴△DEC≌△ABC(SAS),
∴DE=AB.
故答案为:CA,∠DCE=∠ACB,CB,DE=AB.
相关试卷
这是一份第二十讲 圆的基本性质-备战中考数学第一轮专题复习真题分点透练(全国通用),文件包含第二十讲圆的基本性质解析版docx、第二十讲圆的基本性质原卷版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
这是一份第十六讲 图形的相似-备战中考数学第一轮专题复习真题分点透练(全国通用),文件包含第十六讲图形的相似解析版docx、第十六讲图形的相似原卷版docx等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。
这是一份第十五讲 全等三角形-备战中考数学第一轮专题复习真题分点透练(全国通用),文件包含第十五讲全等三角形解析版docx、第十五讲全等三角形原卷版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。