终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    中考数学第一轮专题复习真题分点透练(全国通用)第十五讲全等三角形(原卷版+解析)

    立即下载
    加入资料篮
    中考数学第一轮专题复习真题分点透练(全国通用)第十五讲全等三角形(原卷版+解析)第1页
    中考数学第一轮专题复习真题分点透练(全国通用)第十五讲全等三角形(原卷版+解析)第2页
    中考数学第一轮专题复习真题分点透练(全国通用)第十五讲全等三角形(原卷版+解析)第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学第一轮专题复习真题分点透练(全国通用)第十五讲全等三角形(原卷版+解析)

    展开

    这是一份中考数学第一轮专题复习真题分点透练(全国通用)第十五讲全等三角形(原卷版+解析),共19页。
    1.(2021•重庆)如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是( )
    A.AB=DEB.∠A=∠DC.AC=DFD.AC∥FD
    2.(2022•湖北)如图,已知AB∥DE,AB=DE,请你添加一个条件 ,使△ABC≌△DEF.
    3.(2022•乐山)如图,B是线段AC的中点,AD∥BE,BD∥CE.求证:△ABD≌△BCE.
    类型二 轴对称型
    4.(2022•金华)如图,AC与BD相交于点O,OA=OD,OB=OC,不添加辅助线,判定△ABO≌△DCO的依据是( )
    A.SSSB.SASC.AASD.HL
    5.(2020•永州)如图,已知AB=DC,∠ABC=∠DCB,能直接判断△ABC≌△DCB的方法是( )
    A.SASB.AASC.SSSD.ASA
    6.(2020•甘孜州)如图,等腰△ABC中,点D,E分别在腰AB,AC上,添加下列条件,不能判定△ABE≌△ACD的是( )
    AD=AE B.BE=CD C.∠ADC=∠AEB D.∠DCB=∠EBC
    7.(2021•济宁)如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件 ,使△ABC≌△ADC.
    8.(2022•广州)如图,点D,E在△ABC的边BC上,∠B=∠C,BD=CE,求证:△ABD≌△ACE.
    9.(2020•柳州)如图,已知OC平分∠MON,点A、B分别在射线OM,ON上,且OA=OB.
    求证:△AOC≌△BOC.
    类型三 旋转型
    考向1 共顶点旋转
    10.(2021•哈尔滨)如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为( )
    A.30°B.25°C.35°D.65°
    11.(2021•齐齐哈尔)如图,AC=AD,∠1=∠2,要使△ABC≌△AED,应添加的条件是 .(只需写出一个条件即可)
    12.(2022•宁夏)如图,AC,BD相交于点O,OB=OD,要使△AOB≌△COD,添加一个条件是 .(只写一个)
    13.(2022•牡丹江)如图,CA=CD,∠ACD=∠BCE,请添加一个条件 ,使△ABC≌△DEC.
    14.(2021•宜宾)如图,已知OA=OC,OB=OD,∠AOC=∠BOD.
    求证:△AOB≌△COD.
    考向2 不共顶点旋转
    1.(2021•台湾)已知△ABC与△DEF全等,A、B、C的对应点分别为D、E、F,且E点在AC上,B、F、C、D四点共线,如图所示.若∠A=40°,∠CED=35°,则下列叙述何者正确?( )
    A.EF=EC,AE=FCB.EF=EC,AE≠FC
    C.EF≠EC,AE=FCD.EF≠EC,AE≠FC
    类型四 三垂直型
    16.(2022•益阳)如图,在Rt△ABC中,∠B=90°,CD∥AB,DE⊥AC于点E,且CE=AB.求证:△CED≌△ABC.
    17.(2022•铜仁市)如图,点C在BD上,AB⊥BD,ED⊥BD,AC⊥CE,AB=CD.求证:△ABC≌△CDE.
    其他类型
    18.(2021•陕西)如图,BD∥AC,BD=BC,点E在BC上,且BE=AC.求证:∠D=∠ABC.
    19.(2020•温州)如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D依次在同一直线上,且AB∥DE.
    (1)求证:△ABC≌△DCE.
    (2)连接AE,当BC=5,AC=12时,求AE的长.
    命题点2 全等三角形的实际应用
    20.(2021•盐城)工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB的两边OA、OB上分别截取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C、D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.这里构造全等三角形的依据是( )
    A.SASB.ASAC.AASD.SSS
    21.(2021•柳州)如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB,连接DE,那么量出DE的长就是A、B的距离,为什么?请结合解题过程,完成本题的证明.
    证明:在△DEC和△ABC中,

    ∴△DEC≌△ABC(SAS),
    ∴ .
    第十五讲 全等三角形
    命题点1 全等三角形的判定与性质
    类型一 平移型
    1.(2021•重庆)如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是( )
    A.AB=DEB.∠A=∠DC.AC=DFD.AC∥FD
    【答案】C
    【解答】解:∵BF=EC,
    ∴BF+FC=EC+FC,
    ∴BC=EF,
    又∵∠B=∠E,
    ∴当添加条件AB=DE时,△ABC≌△DEF(SAS),故选项A不符合题意;
    当添加条件∠A=∠D时,△ABC≌△DEF(AAS),故选项B不符合题意;
    当添加条件AC=DF时,无法判断△ABC≌△DEF,故选项C符合题意;
    当添加条件AC∥FD时,则∠ACB=∠DFE,故△ABC≌△DEF(ASA),故选项D不符合题意;
    故选:C.
    2.(2022•湖北)如图,已知AB∥DE,AB=DE,请你添加一个条件 ,使△ABC≌△DEF.
    【答案】∠A=∠D
    【解答】解:添加条件:∠A=∠D.
    ∵AB∥DE,
    ∴∠B=∠DEC,
    在△ABC和△DEF中,

    ∴△ABC≌△DEF(ASA),
    故答案为:∠A=∠D.(答案不唯一)
    3.(2022•乐山)如图,B是线段AC的中点,AD∥BE,BD∥CE.求证:△ABD≌△BCE.
    【解答】证明:∵点B为线段AC的中点,
    ∴AB=BC,
    ∵AD∥BE,
    ∴∠A=∠EBC,
    ∵BD∥CE,
    ∴∠C=∠DBA,
    在△ABD与△BCE中,

    ∴△ABD≌△BCE.(ASA).
    类型二 轴对称型
    4.(2022•金华)如图,AC与BD相交于点O,OA=OD,OB=OC,不添加辅助线,判定△ABO≌△DCO的依据是( )
    A.SSSB.SASC.AASD.HL
    【答案】B
    【解答】解:在△AOB和△DOC中,

    ∴△AOB≌△DOC(SAS),
    故选:B.
    5.(2020•永州)如图,已知AB=DC,∠ABC=∠DCB,能直接判断△ABC≌△DCB的方法是( )
    A.SASB.AASC.SSSD.ASA
    【答案】A
    【解答】解:∵AB=DC,∠ABC=∠DCB,BC=CB,
    ∴△ABC≌△DCB(SAS),
    故选:A.
    6.(2020•甘孜州)如图,等腰△ABC中,点D,E分别在腰AB,AC上,添加下列条件,不能判定△ABE≌△ACD的是( )
    AD=AE B.BE=CD C.∠ADC=∠AEB D.∠DCB=∠EBC
    【答案】B
    【解答】解:∵△ABC为等腰三角形,
    ∴∠ABC=∠ACB,AB=AC,
    ∴当AD=AE时,则根据“SAS”可判断△ABE≌△ACD;
    当∠AEB=∠ADC,则根据“AAS”可判断△ABE≌△ACD;
    当∠DCB=∠EBC,则∠ABE=∠ACD,根据“ASA”可判断△ABE≌△ACD.
    故选:B.
    7.(2021•济宁)如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件 ,使△ABC≌△ADC.
    【答案】AD=AB(答案不唯一)
    【解答】解:添加的条件是AD=AB,
    理由是:在△ABC和△ADC中

    ∴△ABC≌△ADC(SAS),
    故答案为:AD=AB(答案不唯一).
    8.(2022•广州)如图,点D,E在△ABC的边BC上,∠B=∠C,BD=CE,求证:△ABD≌△ACE.
    【解答】证明:∵∠B=∠C,
    ∴AB=AC,
    在△ABD和△ACE中,

    ∴△ABD≌△ACE(SAS).
    9.(2020•柳州)如图,已知OC平分∠MON,点A、B分别在射线OM,ON上,且OA=OB.
    求证:△AOC≌△BOC.
    【解答】证明:∵OC平分∠MON,
    ∴∠AOC=∠BOC,
    在△AOC和△BOC中,

    ∴△AOC≌△BOC(SAS).
    类型三 旋转型
    考向1 共顶点旋转
    10.(2021•哈尔滨)如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为( )
    A.30°B.25°C.35°D.65°
    【答案】B
    【解答】解:∵△ABC≌△DEC,
    ∴∠ACB=∠DCE,
    ∵∠BCE=65°,
    ∴∠ACD=∠BCE=65°,
    ∵AF⊥CD,
    ∴∠AFC=90°,
    ∴∠CAF+∠ACD=90°,
    ∴∠CAF=90°﹣65°=25°,
    故选:B.
    11.(2021•齐齐哈尔)如图,AC=AD,∠1=∠2,要使△ABC≌△AED,应添加的条件是 .(只需写出一个条件即可)
    【答案】∠B=∠E或∠C=∠D或AB=AE
    【解答】解:∵∠1=∠2,
    ∴∠1+∠BAD=∠2+∠BAD,
    即∠BAC=∠EAD,
    ∵AC=AD,
    ∴当添加∠B=∠E时,可根据“AAS”判断△ABC≌△AED;
    当添加∠C=∠D时,可根据“ASA”判断△ABC≌△AED;
    当添加AB=AE时,可根据“SAS”判断△ABC≌△AED.
    故答案为∠B=∠E或∠C=∠D或AB=AE.
    12.(2022•宁夏)如图,AC,BD相交于点O,OB=OD,要使△AOB≌△COD,添加一个条件是 .(只写一个)
    【答案】OA=OC(答案不唯一)
    【解答】解:∵OB=OD,∠AOB=∠COD,OA=OC,
    ∴△AOB≌△COD(SAS),
    ∴要使△AOB≌△COD,添加一个条件是OA=OC,
    故答案为:OA=OC(答案不唯一).
    13.(2022•牡丹江)如图,CA=CD,∠ACD=∠BCE,请添加一个条件 ,使△ABC≌△DEC.
    【答案】CB=CE(答案不唯一)
    【解答】解:∵∠ACD=∠BCE,
    ∴∠ACD+∠ACE=∠BCE+∠ACE,
    ∴∠DCE=∠ACB,
    ∵CA=CD,CB=CE,
    ∴△ABC≌△DEC(SAS),
    故答案为:CB=CE(答案不唯一).
    14.(2021•宜宾)如图,已知OA=OC,OB=OD,∠AOC=∠BOD.
    求证:△AOB≌△COD.
    【解答】证明:∵∠AOC=∠BOD,
    ∴∠AOC﹣∠AOD=∠BOD﹣∠AOD,
    即∠COD=∠AOB,
    在△AOB和△COD中,

    ∴△AOB≌△COD(SAS
    考向2 不共顶点旋转
    1.(2021•台湾)已知△ABC与△DEF全等,A、B、C的对应点分别为D、E、F,且E点在AC上,B、F、C、D四点共线,如图所示.若∠A=40°,∠CED=35°,则下列叙述何者正确?( )
    A.EF=EC,AE=FCB.EF=EC,AE≠FC
    C.EF≠EC,AE=FCD.EF≠EC,AE≠FC
    【答案】B
    【解答】解:∵△ABC≌△DEF,
    ∴∠A=∠D=40°,AC=DF,∠ACB=∠DFE,
    ∵∠ACB=∠DFE,
    ∴EF=EC.
    ∵∠CED=35°,∠D=40°,
    ∴∠D>∠CED.
    ∴CE>CD.
    ∵AC=DF,
    ∴AC﹣CE<DF﹣CD,即AE<FC.
    ∴AE≠FC.
    ∴EF=EC,AE≠FC.
    故选:B.
    类型四 三垂直型
    16.(2022•益阳)如图,在Rt△ABC中,∠B=90°,CD∥AB,DE⊥AC于点E,且CE=AB.求证:△CED≌△ABC.
    【解答】证明:∵DE⊥AC,∠B=90°,
    ∴∠DEC=∠B=90°,
    ∵CD∥AB,
    ∴∠A=∠DCE,
    在△CED和△ABC中,

    ∴△CED≌△ABC(ASA).
    17.(2022•铜仁市)如图,点C在BD上,AB⊥BD,ED⊥BD,AC⊥CE,AB=CD.求证:△ABC≌△CDE.
    【解答】证明:∵AB⊥BD,ED⊥BD,AC⊥CE,
    ∴∠B=∠D=∠ACE=90°,
    ∴∠DCE+∠DEC=90°,∠BCA+∠DCE=90°,
    ∴∠BCA=∠DEC,
    在△ABC和△CDE中,

    ∴△ABC≌△CDE(AAS).
    其他类型
    18.(2021•陕西)如图,BD∥AC,BD=BC,点E在BC上,且BE=AC.求证:∠D=∠ABC.
    【答案】略
    【解答】证明:∵BD∥AC,
    ∴∠ACB=∠EBD,
    在△ABC和△EDB中,

    ∴△ABC≌△EDB(SAS),
    ∴∠ABC=∠D.
    19.(2020•温州)如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D依次在同一直线上,且AB∥DE.
    (1)求证:△ABC≌△DCE.
    (2)连接AE,当BC=5,AC=12时,求AE的长.
    【答案】(1)略 (2)13
    【解答】证明:(1)∵AB∥DE,
    ∴∠BAC=∠D,
    又∵∠B=∠DCE=90°,AC=DE,
    ∴△ABC≌△DCE(AAS);
    (2)∵△ABC≌△DCE,
    ∴CE=BC=5,
    ∵∠ACE=90°,
    ∴AE===13.
    命题点2 全等三角形的实际应用
    20.(2021•盐城)工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB的两边OA、OB上分别截取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C、D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.这里构造全等三角形的依据是( )
    A.SASB.ASAC.AASD.SSS
    【答案】D
    【解答】解:在△COM和△DOM中

    所以△COM≌△DOM(SSS),
    所以∠COM=∠DOM,
    即OM是∠AOB的平分线,
    故选:D.
    21.(2021•柳州)如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB,连接DE,那么量出DE的长就是A、B的距离,为什么?请结合解题过程,完成本题的证明.
    证明:在△DEC和△ABC中,

    ∴△DEC≌△ABC(SAS),
    ∴ .
    【答案】CA,∠DCE=∠ACB,CB,DE=AB.
    【解答】证明:在△DEC和△ABC中,

    ∴△DEC≌△ABC(SAS),
    ∴DE=AB.
    故答案为:CA,∠DCE=∠ACB,CB,DE=AB.

    相关试卷

    第二十讲 圆的基本性质-备战中考数学第一轮专题复习真题分点透练(全国通用):

    这是一份第二十讲 圆的基本性质-备战中考数学第一轮专题复习真题分点透练(全国通用),文件包含第二十讲圆的基本性质解析版docx、第二十讲圆的基本性质原卷版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。

    第十六讲 图形的相似-备战中考数学第一轮专题复习真题分点透练(全国通用):

    这是一份第十六讲 图形的相似-备战中考数学第一轮专题复习真题分点透练(全国通用),文件包含第十六讲图形的相似解析版docx、第十六讲图形的相似原卷版docx等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。

    第十五讲 全等三角形-备战中考数学第一轮专题复习真题分点透练(全国通用):

    这是一份第十五讲 全等三角形-备战中考数学第一轮专题复习真题分点透练(全国通用),文件包含第十五讲全等三角形解析版docx、第十五讲全等三角形原卷版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map