所属成套资源:中考数学第一轮专题复习真题分点透练(全国通用)(原卷版+解析)
中考数学第一轮专题复习真题分点透练(全国通用)第十六讲图形的相似(原卷版+解析)
展开
这是一份中考数学第一轮专题复习真题分点透练(全国通用)第十六讲图形的相似(原卷版+解析),共47页。
1.(2021•攀枝花)若(x、y、z均不为0),则= .
类型二 黄金分割
2.(2022•山西)神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的( )
A.平移B.旋转C.轴对称D.黄金分割
3.(2022•陕西)在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所作EF将矩形窗框ABCD分为上下两部分,其中E为边AB的黄金分割点,即BE2=AE•AB.已知AB为2米,则线段BE的长为 米.
类型三 平行线分线段成比例
4.(2022•临沂)如图,在△ABC中,DE∥BC,=,若AC=6,则EC=( )
A.B.C.D.
5.(2022•巴中)如图,在平面直角坐标系中,C为△AOB的OA边上一点,AC:OC=1:2,过C作CD∥OB交AB于点D,C、D两点纵坐标分别为1、3,则B点的纵坐标为( )
A.4B.5C.6D.7
6.(2022•襄阳)如图,在△ABC中,D是AC的中点,△ABC的角平分线AE交BD于点F,若BF:FD=3:1,AB+BE=3,则△ABC的周长为 .
命题点2 相似的基本性质
7.(2022•兰州)已知△ABC∽△DEF,=,若BC=2,则EF=( )
A.4B.6C.8D.16
8.(2022•贺州)如图,在△ABC中,DE∥BC,DE=2,BC=5,则S△ADE:S△ABC的值是( )
A.B.C.D.
9.(2022•连云港)△ABC的三边长分别为2,3,4,另有一个与它相似的三角形DEF,其最长边为12,则△DEF的周长是( )
A.54B.36C.27D.21
命题点3 相似三角形的判定与性质
类型一 A字型
10.(2022•雅安)如图,在△ABC中,D,E分别是AB和AC上的点,DE∥BC,若=,那么=( )
A.B.C.D.
11.(2022•邵阳)如图,在△ABC中,点D在AB边上,点E在AC边上,请添加一个条件 ,使△ADE∽△ABC.
12.(2022•贵阳)如图,在△ABC中,D是AB边上的点,∠B=∠ACD,AC:AB=1:2,则△ADC与△ACB的周长比是( )
A.1:B.1:2C.1:3D.1:4
13.(2022•凉山州)如图,在△ABC中,点D、E分别在边AB、AC上,若DE∥BC,,DE=6cm,则BC的长为( )
A.9cmB.12cmC.15cmD.18cm
14.(2022•东营)如图,在△ABC中,点F、G在BC上,点E、H分别在AB、AC上,四边形EFGH是矩形,EH=2EF,AD是△ABC的高,BC=8,AD=6,那么EH的长为 .
15.(2022•杭州)如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,连接DE,EF.已知四边形BFED是平行四边形,=.
(1)若AB=8,求线段AD的长.
(2)若△ADE的面积为1,求平行四边形BFED的面积.
16.(2022•江西)如图,四边形ABCD为菱形,点E在AC的延长线上,∠ACD=∠ABE.
(1)求证:△ABC∽△AEB;
(2)当AB=6,AC=4时,求AE的长.
17.(2022•遂宁)如图⊙O是△ABC的外接圆,点O在BC上,∠BAC的角平分线交⊙O于点D,连接BD,CD,过点D作BC的平行线与AC的延长线相交于点P.
(1)求证:PD是⊙O的切线;
(2)求证:△ABD∽△DCP;
(3)若AB=6,AC=8,求点O到AD的距离.
18.(2022•上海)如图所示,在等腰三角形ABC中,AB=AC,点E,F在线段BC上,点Q在线段AB上,且CF=BE,AE2=AQ•AB.
求证:(1)∠CAE=∠BAF;
(2)CF•FQ=AF•BQ.
19.(2022•贵港)如图,在△ABC中,∠ACB=90°,点D是AB边的中点,点O在AC边上,⊙O经过点C且与AB边相切于点E,∠FAC=∠BDC.
(1)求证:AF是⊙O的切线;
(2)若BC=6,sinB=,求⊙O的半径及OD的长.
类型二 8字型
20.(2022•哈尔滨)如图,AB∥CD,AC,BD相交于点E,AE=1,EC=2,DE=3,则BD的长为( )
A.B.4C.D.6
21.(2022•海南)如图,菱形ABCD中,点E是边CD的中点,EF垂直AB交AB的延长线于点F,若BF:CE=1:2,EF=,则菱形ABCD的边长是( )
A.3B.4C.5D.
22.(2022•鞍山)如图,AB∥CD,AD,BC相交于点E,若AE:DE=1:2,AB=2.5,则CD的长为 .
23.(2022•菏泽)如图,在Rt△ABC中,∠ABC=90°,E是边AC上一点,且BE=BC,过点A作BE的垂线,交BE的延长线于点D,求证:△ADE∽△ABC.
24.(2022•无锡)如图,边长为6的等边三角形ABC内接于⊙O,点D为AC上的动点(点A、C除外),BD的延长线交⊙O于点E,连接CE.
(1)求证:△CED∽△BAD;
(2)当DC=2AD时,求CE的长.
25.(2022•泰安)如图,矩形ABCD中,点E在DC上,DE=BE,AC与BD相交于点O,BE与AC相交于点F.
(1)若BE平分∠CBD,求证:BF⊥AC;
(2)找出图中与△OBF相似的三角形,并说明理由;
(3)若OF=3,EF=2,求DE的长度.
类型三 旋转型
26.(2022•扬州)如图,在△ABC中,AB<AC,将△ABC以点A为中心逆时针旋转得到△ADE,点D在BC边上,DE交AC于点F.下列结论:①△AFE∽△DFC;②DA平分∠BDE;③∠CDF=∠BAD,其中所有正确结论的序号是( )
A.①②B.②③C.①③D.①②③
27.(2022•遂宁)如图,正方形ABCD与正方形BEFG有公共顶点B,连接EC、GA,交于点O,GA与BC交于点P,连接OD、OB,则下列结论一定正确的是( )
①EC⊥AG;②△OBP∽△CAP;③OB平分∠CBG;④∠AOD=45°;
A.①③B.①②③C.②③D.①②④
28.(2022•牡丹江)如图,在等腰直角三角形ABC和等腰直角三角形ADE中,∠BAC=∠DAE=90°,点D在BC边上,DE与AC相交于点F,AH⊥DE,垂足是G,交BC于点H.下列结论中:①AC=CD;②AD2=BC•AF;③若AD=3,DH=5,则BD=3;④AH2=DH•AC,正确的是 .
29.(2022•随州)如图1,在矩形ABCD中,AB=8,AD=6,E,F分别为AB,AD的中点,连接EF.如图2,将△AEF绕点A逆时针旋转角θ(0°<θ<90°),使EF⊥AD,连接BE并延长交DF于点H.则∠BHD的度数为 ,DH的长为 .
类型四 三垂直型
30.(2022•达州)如图,点E在矩形ABCD的AB边上,将△ADE沿DE翻折,点A恰好落在BC边上的点F处,若CD=3BF,BE=4,则AD的长为( )
A.9B.12C.15D.18
31.(2022•辽宁)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E是OD的中点,连接CE并延长交AD于点G,将线段CE绕点C逆时针旋转90°得到CF,连接EF,点H为EF的中点.连接OH,则的值为 .
类型五 网络中相似三角形的判定与性质
32.(2022•包头)如图,在边长为1的小正方形组成的网格中,A,B,C,D四个点均在格点上,AC与BD相交于点E,连接AB,CD,则△ABE与△CDE的周长比为( )
A.1:4B.4:1C.1:2D.2:1
命题点4 相似三角形的实际应用
33.(2022•德州)如图,把一根长为4.5m的竹竿AB斜靠在石坝旁,量出竿长1m处离地面的高度为0.6m,则石坝的高度为( )
A.2.7mB.3.6mC.2.8mD.2.1m
34.(2022•百色)数学兴趣小组通过测量旗杆的影长来求旗杆的高度,他们在某一时刻测得高为2米的标杆影长为1.2米,此时旗杆影长为7.2米,则旗杆的高度为 米.
35.(2022•广西)古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF长2米,它的影长FD是4米,同一时刻测得OA是268米,则金字塔的高度BO
是 米.
36.(2022•杭州)某项目学习小组为了测量直立在水平地面上的旗杆AB的高度,把标杆DE直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.已知B,C,E,F在同一直线上,AB⊥BC,DE⊥EF,DE=2.47m,则AB= m.
37.(2022•陕西)小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB的影长OC为16米,OA的影长OD为20米,小明的影长FG为2.4米,其中O、C、D、F、G五点在同一直线上,A、B、O三点在同一直线上,且AO⊥OD,EF⊥FG.已知小明的身高EF为1.8米,求旗杆的高AB.
第十六讲 图形的相似
命题点1 比例线段
类型一 比例的性质
1.(2021•攀枝花)若(x、y、z均不为0),则= .
【答案】3
【解答】解:设===k(k≠0),
则x=6k,y=4k,z=3k,
所以,==3.
故答案为:3.
类型二 黄金分割
2.(2022•山西)神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的( )
A.平移B.旋转C.轴对称D.黄金分割
【答案】D.
【解答】解:∵每圈螺纹的直径与相邻螺纹直径的比约为0.618,
又黄金分割比为≈0.618,
∴其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的黄金分割,
故选:D.
3.(2022•陕西)在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所作EF将矩形窗框ABCD分为上下两部分,其中E为边AB的黄金分割点,即BE2=AE•AB.已知AB为2米,则线段BE的长为 米.
【答案】(﹣1+)
【解答】解:∵BE2=AE•AB,
设BE=x,则AE=(2﹣x),
∵AB=2,
∴x2=2(2﹣x),
即x2+2x﹣4=0,
解得:x1=﹣1,x2=﹣1﹣(舍去),
∴线段BE的长为(﹣1+)米.
故答案为:(﹣1+).
类型三 平行线分线段成比例
4.(2022•临沂)如图,在△ABC中,DE∥BC,=,若AC=6,则EC=( )
A.B.C.D.
【答案】C
【解答】解:∵DE∥BC,
∴=,
∴,
∴,
∴EC=.
故选:C.
5.(2022•巴中)如图,在平面直角坐标系中,C为△AOB的OA边上一点,AC:OC=1:2,过C作CD∥OB交AB于点D,C、D两点纵坐标分别为1、3,则B点的纵坐标为( )
A.4B.5C.6D.7
【答案】C
【解答】解:∵CD∥OB,
∴,
∵AC:OC=1:2,
∴,
∵C、D两点纵坐标分别为1、3,
∴CD=3﹣1=2,
∴,
解得:OB=6,
∴B点的纵坐标为6,
故选:C.
6.(2022•襄阳)如图,在△ABC中,D是AC的中点,△ABC的角平分线AE交BD于点F,若BF:FD=3:1,AB+BE=3,则△ABC的周长为 .
【答案】5
【解答】解:如图,过点F作FM⊥AB于点M,FN⊥AC于点N,过点D作DT∥AE交BC于点T.
∵AE平分∠BAC,FM⊥AB,FN⊥AC,
∴FM=FN,
∴===3,
∴AB=3AD,
设AD=DC=a,则AB=3a,
∵AD=DC,DT∥AE,
∴ET=CT,
∴==3,
设ET=CT=b,则BE=3b,
∵AB+BE=3,
∴3a+3b=3,
∴a+b=,
∴△ABC的周长=AB+AC+BC=5a+5b=5,
故答案为:5.
命题点2 相似的基本性质
7.(2022•兰州)已知△ABC∽△DEF,=,若BC=2,则EF=( )
A.4B.6C.8D.16
【答案】A
【解答】解:∵△ABC∽△DEF,
∴,
∵=,BC=2,
∴,
∴EF=4,
故选:A.
8.(2022•贺州)如图,在△ABC中,DE∥BC,DE=2,BC=5,则S△ADE:S△ABC的值是( )
A.B.C.D.
【答案】B
【解答】解:∵DE∥BC,
∴△ADE∽△ABC,
∵DE=2,BC=5,
∴S△ADE:S△ABC的值为,
故选:B.
9.(2022•连云港)△ABC的三边长分别为2,3,4,另有一个与它相似的三角形DEF,其最长边为12,则△DEF的周长是( )
A.54B.36C.27D.21
【答案】C
【解答】解:方法一:设2对应的边是x,3对应的边是y,
∵△ABC∽△DEF,
∴==,
∴x=6,y=9,
∴△DEF的周长是27;
方式二:∵△ABC∽△DEF,
∴=,
∴=,
∴C△DEF=27;
故选:C.
命题点3 相似三角形的判定与性质
类型一 A字型
10.(2022•雅安)如图,在△ABC中,D,E分别是AB和AC上的点,DE∥BC,若=,那么=( )
A.B.C.D.
【答案】D
【解答】解:∵DE∥BC,
∴△ADE∽△ABC,
∴=,
∵=,
∴=,
∴==.
故选:D.
11.(2022•邵阳)如图,在△ABC中,点D在AB边上,点E在AC边上,请添加一个条件 ,使△ADE∽△ABC.
【答案】∠ADE=∠B或∠AED=∠C或=(答案不唯一)
【解答】解:∵∠A=∠A,
∴当∠ADE=∠B或∠AED=∠C或=时,△ADE∽△ABC,
故答案为:∠ADE=∠B或∠AED=∠C或=(答案不唯一).
12.(2022•贵阳)如图,在△ABC中,D是AB边上的点,∠B=∠ACD,AC:AB=1:2,则△ADC与△ACB的周长比是( )
A.1:B.1:2C.1:3D.1:4
【答案】B
【解答】解:∵∠B=∠ACD,∠CAD=∠BAC,
∴△ACD∽△ABC,
∴==,
故选:B.
13.(2022•凉山州)如图,在△ABC中,点D、E分别在边AB、AC上,若DE∥BC,,DE=6cm,则BC的长为( )
A.9cmB.12cmC.15cmD.18cm
【答案】C
【解答】解:∵=,
∴=,
∵DE∥BC,
∴∠ADE=∠B,∠AED=∠C,
∴△ADE∽△ABC,
∴=,
∴=,
∴BC=15(cm),
故选:C
14.(2022•东营)如图,在△ABC中,点F、G在BC上,点E、H分别在AB、AC上,四边形EFGH是矩形,EH=2EF,AD是△ABC的高,BC=8,AD=6,那么EH的长为 .
【答案】
【解答】解:设AD交EH于点R,
∵矩形EFGH的边FG在BC上,
∴EH∥BC,∠EFC=90°,
∴△AEH∽△ABC,
∵AD⊥BC于点D,
∴∠ARE=∠ADB=90°,
∴AR⊥EH,
∴=,
∵EF⊥BC,RD⊥BC,EH=2EF,
∴RD=EF=EH,
∵BC=8,AD=6,AR=6﹣EH,
∴=,
解得EH=,
∴EH的长为,
故答案为:.
15.(2022•杭州)如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,连接DE,EF.已知四边形BFED是平行四边形,=.
(1)若AB=8,求线段AD的长.
(2)若△ADE的面积为1,求平行四边形BFED的面积.
【解答】解:(1)∵四边形BFED是平行四边形,
∴DE∥BF,
∴DE∥BC,
∴△ADE∽△ABC,
∴==,
∵AB=8,
∴AD=2;
(2)∵△ADE∽△ABC,
∴=()2=()2=,
∵△ADE的面积为1,
∴△ABC的面积是16,
∵四边形BFED是平行四边形,
∴EF∥AB,
∴△EFC∽△ABC,
∴=()2=,
∴△EFC的面积=9,
∴平行四边形BFED的面积=16﹣9﹣1=6.
16.(2022•江西)如图,四边形ABCD为菱形,点E在AC的延长线上,∠ACD=∠ABE.
(1)求证:△ABC∽△AEB;
(2)当AB=6,AC=4时,求AE的长.
【解答】(1)证明:∵四边形ABCD为菱形,
∴∠ACD=∠BCA,
∵∠ACD=∠ABE,
∴∠BCA=∠ABE,
∵∠BAC=∠EAB,
∴△ABC∽△AEB;
(2)解:∵△ABC∽△AEB,
∴=,
∵AB=6,AC=4,
∴=,
∴AE==9.
17.(2022•遂宁)如图⊙O是△ABC的外接圆,点O在BC上,∠BAC的角平分线交⊙O于点D,连接BD,CD,过点D作BC的平行线与AC的延长线相交于点P.
(1)求证:PD是⊙O的切线;
(2)求证:△ABD∽△DCP;
(3)若AB=6,AC=8,求点O到AD的距离.
【解答】(1)证明:如图1,连接OD.
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴=,
∴∠BOD=∠COD=90°,
∵BC∥PD,
∴∠ODP=∠BOD=90°,
∴OD⊥PD,
∵OD是半径,
∴PD是⊙O的切线.
(2)证明:∵BC∥PD,
∴∠PDC=∠BCD.
∵∠BCD=∠BAD,
∴∠BAD=∠PDC,
∵∠ABD+∠ACD=180°,∠ACD+∠PCD=180°,
∴∠ABD=∠PCD,
∴△ABD∽△DCP;
(3)解法一:如图,过点O作OE⊥AD于E,连接OD,
∵BC是⊙O的直径,
∴∠BAC=∠BDC=90°,
∵AB=6,AC=8,
∴BC==10,
∵BD=CD,
∴BD=CD=5,
由(2)知:△ABD∽△DCP,
∴=,即=,
∴CP=,
∴AP=AC+CP=8+=,
∵∠ADB=∠ACB=∠P,∠BAD=∠DAP,
∴△BAD∽△DAP,
∴=,即=,
∴AD2=6×=98,
∴AD=7,
∵OE⊥AD,
∴DE=AD=,
∴OE===,
即点O到AD的距离是.
解法二:如图,过点D作DM⊥AB于M,DN⊥AC于N,过点O作OE⊥AD于E,连接OD,则∠M=∠CND=90°,
∵AD平分∠BAC,∠BAC=90°,
∴DM=DN,∠DAM=∠CAD=45°,
∵A,B,D,C四点共圆,
∴∠DBM=∠DCN,
∴△DCN≌△DBM(AAS),
∴CN=BM,
同理得:AM=AN,
∵AB=6,AC=8,
∴AM=DM=7,
∴AD=7,
由解法一可得:OE=.
即点O到AD的距离是.
18.(2022•上海)如图所示,在等腰三角形ABC中,AB=AC,点E,F在线段BC上,点Q在线段AB上,且CF=BE,AE2=AQ•AB.
求证:(1)∠CAE=∠BAF;
(2)CF•FQ=AF•BQ.
【解答】证明:(1)∵AB=AC,
∴∠B=∠C,
∵CF=BE,
∴CF﹣EF=BE﹣EF,
即CE=BF,
在△ACE和△ABF中,
,
∴△ACE≌△ABF(SAS),
∴∠CAE=∠BAF;
(2)∵△ACE≌△ABF,
∴AE=AF,∠CAE=∠BAF,
∵AE2=AQ•AB,AC=AB,
∴=,
∴△ACE∽△AFQ,
∴∠AEC=∠AQF,
∴∠AEF=∠BQF,
∵AE=AF,
∴∠AEF=∠AFE,
∴∠BQF=∠AFE,
∵∠B=∠C,
∴△CAF∽△BFQ,
∴=,
即CF•FQ=AF•BQ.
19.(2022•贵港)如图,在△ABC中,∠ACB=90°,点D是AB边的中点,点O在AC边上,⊙O经过点C且与AB边相切于点E,∠FAC=∠BDC.
(1)求证:AF是⊙O的切线;
(2)若BC=6,sinB=,求⊙O的半径及OD的长.
【解答】(1)证明:如图,作OH⊥FA,垂足为H,连接OE,
∵∠ACB=90°,D是AB的中点,
∴CD=AD=,
∴∠CAD=∠ACD,
∵∠BDC=∠CAD+∠ACD=2∠CAD,
又∵∠FAC=,
∴∠FAC=∠CAB,
即AC是∠FAB的平分线,
∵点O在AC上,⊙O与AB相切于点E,
∴OE⊥AB,且OE是⊙O的半径,
∴OH=OE,OH是⊙O的半径,
∴AF是⊙O的切线;
(2)解:如图,在△ABC中,∠ACB=90°,BC=6,sinB=,
∴可设AC=4x,AB=5x,
∴(5x)2﹣(4x)2=62,
∴x=2,
则AC=8,AB=10,
设⊙O的半径为r,则OC=OE=r,
∵Rt△AOE∽Rt△ABC,
∴,
即,
∴r=3,
∴AE=4,
又∵AD=5,
∴DE=1,
在Rt△ODE中,由勾股定理得:OD=.
类型二 8字型
20.(2022•哈尔滨)如图,AB∥CD,AC,BD相交于点E,AE=1,EC=2,DE=3,则BD的长为( )
A.B.4C.D.6
【答案】C
【解答】解:∵AB∥CD,
∴△ABE∽△CDE,
∴=,即=,
∴BE=1.5,
∴BD=BE+DE=4.5.
故选:C.
21.(2022•海南)如图,菱形ABCD中,点E是边CD的中点,EF垂直AB交AB的延长线于点F,若BF:CE=1:2,EF=,则菱形ABCD的边长是( )
A.3B.4C.5D.
【答案】B
【解答】解:过点D作DH⊥AB于点H,如图,
∵四边形ABCD是菱形,
∴AD=AB=CD,AB∥CD.
∵EF⊥AB,DH⊥AB,
∴DH∥EF,
∴四边形DHFE为平行四边形,
∴HF=DE,DH=EF=.
∵点E是边CD的中点,
∴DE=CD,
∴HF=CD=AB.
∵BF:CE=1:2,
∴设BF=x,则CE=2x,
∴CD=4x,DE=HF=2x,
AD=AB=4x,
∴AF=AB+BF=5x.
∴AH=AF﹣HF=3x.
在Rt△ADH中,
∵DH2+AH2=AD2,
∴.
解得:x=±1(负数不合题意,舍去),
∴x=1.
∴AB=4x=4.
即菱形ABCD的边长是4,
故选:B.
22.(2022•鞍山)如图,AB∥CD,AD,BC相交于点E,若AE:DE=1:2,AB=2.5,则CD的长为 .
【答案】5
【解答】解:∵AB∥CD,
∴∠B=∠C,∠A=∠D,
∴△EAB∽△EDC,
∴AB:CD=AE:DE=1:2,
又∵AB=2.5,
∴CD=5.
故答案为:5.
23.(2022•菏泽)如图,在Rt△ABC中,∠ABC=90°,E是边AC上一点,且BE=BC,过点A作BE的垂线,交BE的延长线于点D,求证:△ADE∽△ABC.
【解答】证明:∵BE=BC,
∴∠C=∠CEB,
∵∠CEB=∠AED,
∴∠C=∠AED,
∵AD⊥BE,
∴∠D=∠ABC=90°,
∴△ADE∽△ABC.
24.(2022•无锡)如图,边长为6的等边三角形ABC内接于⊙O,点D为AC上的动点(点A、C除外),BD的延长线交⊙O于点E,连接CE.
(1)求证:△CED∽△BAD;
(2)当DC=2AD时,求CE的长.
【解答】(1)证明:如图1,
∵∠CDE=∠BDA,∠A=∠E,
∴△CED∽△BAD;
(2)解:如图2,过点D作DF⊥EC于点F,
∵△ABC是边长为6等边三角形,
∴∠A=60°,AC=AB=6,
∵DC=2AD,
∴AD=2,DC=4,
∵△CED∽△BAD,
∴,
∴EC=3DE,
∵∠E=∠A=60°,DF⊥EC,
∴∠EDF=90°﹣60°=30°,
∴DE=2EF,
设EF=x,则DE=2x,DF=x,EC=6x,
∴FC=5x,
在Rt△DFC中,DF2+FC2=DC2,
∴(x)2+(5x)2=42,
解得:x=或﹣(不符合题意,舍去),
∴EC=6x=.
25.(2022•泰安)如图,矩形ABCD中,点E在DC上,DE=BE,AC与BD相交于点O,BE与AC相交于点F.
(1)若BE平分∠CBD,求证:BF⊥AC;
(2)找出图中与△OBF相似的三角形,并说明理由;
(3)若OF=3,EF=2,求DE的长度.
【解答】(1)证明:如图,
在矩形ABCD中,OD=OC,AB∥CD,∠BCD=90°,
∴∠2=∠3=∠4,∠3+∠5=90°,
∵DE=BE,
∴∠1=∠2,
又∵BE平分∠DBC,
∴∠1=∠6,
∴∠3=∠6,
∴∠6+∠5=90°,
∴BF⊥AC;
(2)解:与△OBF相似的三角形有△ECF,△BAF理由如下:
∵∠1=∠3,∠EFC=∠BFO,
∴△ECF∽△OBF,
∵DE=BE,
∴∠1=∠2,
又∵∠2=∠4,
∴∠1=∠4,
又∵∠BFA=∠OFB,
∴△BAF∽△OBF;
(3)解:在矩形ABCD中,∠4=∠3=∠2,
∵∠1=∠2,∴∠1=∠4.
又∵∠OFB=∠BFA,
∴△OBF∽△BFA.
∵∠1=∠3,∠OFB=∠EFC,
∴△OBF∽△ECF.
∴,
∴,即3CF=2BF,
∴3(CF+OF)=3CF+9=2BF+9,
∴3OC=2BF+9
∴3OA=2BF+9①,
∵△ABF∽△BOF,
∴,
∴BF2=OF•AF,
∴BF2=3(OA+3)②,
联立①②,可得BF=1±(负值舍去),
∴DE=BE=2+1+=3+.
类型三 旋转型
26.(2022•扬州)如图,在△ABC中,AB<AC,将△ABC以点A为中心逆时针旋转得到△ADE,点D在BC边上,DE交AC于点F.下列结论:①△AFE∽△DFC;②DA平分∠BDE;③∠CDF=∠BAD,其中所有正确结论的序号是( )
A.①②B.②③C.①③D.①②③
【答案】D
【解答】解:∵将△ABC以点A为中心逆时针旋转得到△ADE,
∴∠BAC=∠DAE,∠B=∠ADE,AB=AD,∠E=∠C,
∴∠B=∠ADB,
∴∠ADE=∠ADB,
∴DA平分∠BDE,
∴②符合题意;
∵∠AFE=∠DFC,∠E=∠C,
∴△AFE∽△DFC,
∴①符合题意;
∵∠BAC=∠DAE,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,
∴∠BAD=∠FAE,
∵△AFE∽△DFC,
∴∠FAE=∠CDF,
∴∠BAD=∠CDF,
∴③符合题意;
故选:D.
27.(2022•遂宁)如图,正方形ABCD与正方形BEFG有公共顶点B,连接EC、GA,交于点O,GA与BC交于点P,连接OD、OB,则下列结论一定正确的是( )
①EC⊥AG;②△OBP∽△CAP;③OB平分∠CBG;④∠AOD=45°;
A.①③B.①②③C.②③D.①②④
【答案】D
【解答】解:∵四边形ABCD、四边形BEFG是正方形,
∴AB=BC,BG=BE,∠ABC=90°=∠GBE,
∴∠ABC+∠CBG=∠GBE+∠CBG,即∠ABG=∠EBC,
∴△ABG≌△CBE(SAS),
∴∠BAG=∠BCE,
∵∠BAG+∠APB=90°,
∴∠BCE+∠APB=90°,
∴∠BCE+∠OPC=90°,
∴∠POC=90°,
∴EC⊥AG,故①正确;
取AC的中点K,如图:
在Rt△AOC中,K为斜边AC上的中点,
∴AK=CK=OK,
在Rt△ABC中,K为斜边AC上的中点,
∴AK=CK=BK,
∴AK=CK=OK=BK,
∴A、B、O、C四点共圆,
∴∠BOA=∠BCA,
∵∠BPO=∠CPA,
∴△OBP∽△CAP,故②正确,
∵∠AOC=∠ADC=90°,
∴∠AOC+∠ADC=180°,
∴A、O、C、D四点共圆,
∵AD=CD,
∴∠AOD=∠DOC=45°,故④正确,
由已知不能证明OB平分∠CBG,故③错误,
故正确的有:①②④,
故选:D.
28.(2022•牡丹江)如图,在等腰直角三角形ABC和等腰直角三角形ADE中,∠BAC=∠DAE=90°,点D在BC边上,DE与AC相交于点F,AH⊥DE,垂足是G,交BC于点H.下列结论中:①AC=CD;②AD2=BC•AF;③若AD=3,DH=5,则BD=3;④AH2=DH•AC,正确的是 .
【答案】②③
【解答】解:①∵△ABC是等腰直角三角形,
∴∠B=∠ACB=45°,
∵∠ADC=∠B+∠BAD,
而∠BAD的度数不确定,
∴∠ADC与∠CAD不一定相等,
∴AC与CD不一定相等,
故①错误;
②∵∠BAC=∠DAE=90°,
∴∠BAD=∠CAE,
∵∠B=∠AED=45°,
∴△AEF∽△ABD,
∴=,
∵AE=AD,AB=BC,
∴AD2=AF•AB=AF•BC,
∴AD2=AF•BC,
故②正确;
④∵∠DAH=∠B=45°,∠AHD=∠AHD,
∴△ADH∽△BAH,
∴=,
∴AH2=DH•BH,
而BH与AC不一定相等,
故④不一定正确;
③∵△ADE是等腰直角三角形,
∴∠ADG=45°,
∵AH⊥DE,
∴∠AGD=90°,
∵AD=3,
∴AG=DG=,
∵DH=5,
∴GH===,
∴AH=AG+GH=2,
由④知:AH2=DH•BH,
∴(2)2=5BH,
∴BH=8,
∴BD=BH﹣DH=8﹣5=3,
故③正确;
本题正确的结论有:②③
故答案为:②③.
29.(2022•随州)如图1,在矩形ABCD中,AB=8,AD=6,E,F分别为AB,AD的中点,连接EF.如图2,将△AEF绕点A逆时针旋转角θ(0°<θ<90°),使EF⊥AD,连接BE并延长交DF于点H.则∠BHD的度数为 ,DH的长为 .
【答案】90°,
【解答】解:如图,设EF交AD于点J,AD交BH于点O,过点E作EK⊥AB于点K.
∵∠EAF=∠BAD=90°,
∴∠DAF=∠BAE,
∵==,
∴=,
∴△DAF∽△BAE,
∴∠ADF=∠ABE,
∵∠DOH=∠AOB,
∴∠DHO=∠BAO=90°,
∴∠BHD=90°,
∵AF=3,AE=4,∠EAF=90°,
∴EF==5,
∵EF⊥AD,
∴•AE•AF=•EF•AJ,
∴AJ=,
∴EJ===,
∵EJ∥AB,
∴=,
∴=,
∴OJ=,
∴OA=AJ+OJ=+=4,
∴OB===4,OD=AD﹣AO=6﹣4=2,
∵cs∠ODH=cs∠ABO,
∴=,
∴=,
∴DH=.
故答案为:90°,
类型四 三垂直型
30.(2022•达州)如图,点E在矩形ABCD的AB边上,将△ADE沿DE翻折,点A恰好落在BC边上的点F处,若CD=3BF,BE=4,则AD的长为( )
A.9B.12C.15D.18
【答案】C
【解答】解:∵四边形ABCD是矩形,
∴AD=BC,∠A=∠EBF=∠BCD=90°,
∵将矩形ABCD沿直线DE折叠,
∴AD=DF=BC,∠A=∠DFE=90°,
∴∠BFE+∠DFC=∠BFE+∠BEF=90°,
∴∠BEF=∠CFD,
∴△BEF∽△CFD,
∴,
∵CD=3BF,
∴CF=3BE=12,
设BF=x,则CD=3x,DF=BC=x+12,
∵∠C=90°,
∴Rt△CDF中,CD2+CF2=DF2,
∴(3x)2+122=(x+12)2,
解得x=3(舍去0根),
∴AD=DF=3+12=15,
故选:C.
31.(2022•辽宁)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E是OD的中点,连接CE并延长交AD于点G,将线段CE绕点C逆时针旋转90°得到CF,连接EF,点H为EF的中点.连接OH,则的值为 .
【答案】
【解答】解:以O为原点,平行于AB的直线为x轴,建立直角坐标系,过E作EM⊥CD于M,过F作FN⊥DC,交DC延长线于N,如图:
设正方形ABCD的边长为2,则C(1,1),D(﹣1,1),
∵E为OD中点,
∴E(﹣,),
设直线CE解析式为y=kx+b,把C(1,1),E(﹣,)代入得:
,
解得,
∴直线CE解析式为y=x+,
在y=x+中,令x=﹣1得y=,
∴G(﹣1,),
∴GE==,
∵将线段CE绕点C逆时针旋转90°得到CF,
∴CE=CF,∠ECF=90°,
∴∠MCE=90°﹣∠NCF=∠NFC,
∵∠EMC=∠CNF=90°,
∴△EMC≌△CNF(AAS),
∴ME=CN,CM=NF,
∵E(﹣,),C(1,1),
∴ME=CN=,CM=NF=,
∴F(,﹣),
∵H是EF中点,
∴H(,0),
∴OH=,
∴==.
故答案为:.
类型五 网络中相似三角形的判定与性质
32.(2022•包头)如图,在边长为1的小正方形组成的网格中,A,B,C,D四个点均在格点上,AC与BD相交于点E,连接AB,CD,则△ABE与△CDE的周长比为( )
A.1:4B.4:1C.1:2D.2:1
【答案】D
【解答】解:如图所示,
由网格图可知:BF=2,AF=4,CH=2,DH=1,
∴AB==2,
CD==.
∵FA∥CG,
∴∠FAC=∠ACG.
在Rt△ABF中,
tan∠BAF=,
在Rt△CDH中,
tan∠HCD=,
∴tan∠BAF=tan∠HCD,
∴∠BAF=∠HCD,
∵∠BAC=∠BAF+∠CAF,∠ACD=∠DCH+∠GCA,
∴∠BAC=∠DCA,
∴AB∥CD,
∴△ABE∽△CDE,
∴△ABE与△CDE的周长比===2:1.
故选:D
命题点4 相似三角形的实际应用
33.(2022•德州)如图,把一根长为4.5m的竹竿AB斜靠在石坝旁,量出竿长1m处离地面的高度为0.6m,则石坝的高度为( )
A.2.7mB.3.6mC.2.8mD.2.1m
【答案】A
【解答】解:过点B作BF⊥AD于点F,
∵DC⊥AD,BF⊥AD,
∴DC∥BF,
∴△ACD∽△ABF,
∴=,
∴=,
解得:BF=2.7.
故选:A.
34.(2022•百色)数学兴趣小组通过测量旗杆的影长来求旗杆的高度,他们在某一时刻测得高为2米的标杆影长为1.2米,此时旗杆影长为7.2米,则旗杆的高度为 米.
【答案】12
【解答】解:设旗杆的高度为x米,
根据题意得:=,
解得x=12,
∴旗杆的高度为12米,
故答案为:12.
35.(2022•广西)古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF长2米,它的影长FD是4米,同一时刻测得OA是268米,则金字塔的高度BO是 米.
【答案】134
【解答】解:据相同时刻的物高与影长成比例,
设金字塔的高度BO为x米,则可列比例为,,
解得:x=134,
经检验,x=134是原方程的解,
∴BO=134.
故答案为:134.
36.(2022•杭州)某项目学习小组为了测量直立在水平地面上的旗杆AB的高度,把标杆DE直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.已知B,C,E,F在同一直线上,AB⊥BC,DE⊥EF,DE=2.47m,则AB= m.
【答案】9.88
【解答】解:∵同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.
∴AC∥DF,
∴∠ACB=∠DFE,
∵AB⊥BC,DE⊥EF,
∴∠ABC=∠DEF=90°,
∴Rt△ABC∽△Rt△DEF,
∴,即,
解得AB=9.88,
∴旗杆的高度为9.88m.
故答案为:9.88.
37.(2022•陕西)小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB的影长OC为16米,OA的影长OD为20米,小明的影长FG为2.4米,其中O、C、D、F、G五点在同一直线上,A、B、O三点在同一直线上,且AO⊥OD,EF⊥FG.已知小明的身高EF为1.8米,求旗杆的高AB.
【解答】解:解法一:∵AD∥EG,
∴∠ADO=∠EGF,
∵∠AOD=∠EFG=90°,
∴△AOD∽△EFG,
∴=,即=,
∴AO=15,
∵AD∥BC,
∴△BOC∽△AOD,
∴=,即=,
∴BO=12,
∴AB=AO﹣BO=15﹣12=3(米);
解法二:如图,过点C作CM⊥OD于C,交AD于M,
∵△EGF∽△MDC,
∴=,即=,
∴CM=3,
即AB=CM=3(米),
答:旗杆的高AB是3米.
相关试卷
这是一份第三讲 分式及其运算-备战中考数学第一轮专题复习真题分点透练(全国通用),文件包含第三讲分式及其运算解析版docx、第三讲分式及其运算原卷版docx等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。
这是一份第二十讲 圆的基本性质-备战中考数学第一轮专题复习真题分点透练(全国通用),文件包含第二十讲圆的基本性质解析版docx、第二十讲圆的基本性质原卷版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
这是一份第十六讲 图形的相似-备战中考数学第一轮专题复习真题分点透练(全国通用),文件包含第十六讲图形的相似解析版docx、第十六讲图形的相似原卷版docx等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。