中考数学压轴真题汇编(全国通用)专题03函数图像的压轴真题训练(原卷版+解析)
展开A.B.
C.D.
2.(2021•河南)如图1,矩形ABCD中,点E为BC的中点,点P沿BC从点B运动到点C,设B,P两点间的距离为x,PA﹣PE=y,图2是点P运动时y随x变化的关系图象,则BC的长为( )
A.4B.5C.6D.7
3.(2022•鞍山)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4cm,CD⊥AB,垂足为点D,动点M从点A出发沿AB方向以cm/s的速度匀速运动到点B,同时动点N从点C出发沿射线DC方向以1cm/s的速度匀速运动.当点M停止运动时,点N也随之停止,连接MN.设运动时间为ts,△MND的面积为Scm2,则下列图象能大致反映S与t之间函数关系的是( )
A.B.
C.D.
4.(2022•菏泽)如图,等腰Rt△ABC与矩形DEFG在同一水平线上,AB=DE=2,DG=3,现将等腰Rt△ABC沿箭头所指方向水平平移,平移距离x是自点C到达DE之时开始计算,至AB离开GF为止.等腰Rt△ABC与矩形DEFG的重合部分面积记为y,则能大致反映y与x的函数关系的图象为( )
A.B.
C.D.
5.(2022•鄂尔多斯)如图①,在正方形ABCD中,点M是AB的中点,点N是对角线BD上一动点,设DN=x,AN+MN=y,已知y与x之间的函数图象如图②所示,点E(a,2)是图象的最低点,那么a的值为( )
A.B.2C.D.
6.(2021•鞍山)如图,△ABC是等边三角形,AB=6cm,点M从点C出发沿CB方向以1cm/s的速度匀速运动到点B,同时点N从点C出发沿射线CA方向以2cm/s的速度匀速运动,当点M停止运动时,点N也随之停止.过点M作MP∥CA交AB于点P,连接MN,NP,作△MNP关于直线MP对称的△MN′P,设运动时间为ts,△MN′P与△BMP重叠部分的面积为Scm2,则能表示S与t之间函数关系的大致图象为( )
A.B.
C.D.
7.(2021•威海)如图,在菱形ABCD中,AB=2cm,∠D=60°,点P,Q同时从点A出发,点P以1cm/s的速度沿A﹣C﹣D的方向运动,点Q以2cm/s的速度沿A﹣B﹣C﹣D的方向运动,当其中一点到达D点时,两点停止运动.设运动时间为x(s),△APQ的面积为y(cm2),则下列图象中能大致反映y与x之间函数关系的是( )
A.B.
C.D.
8.(2021•日照)如图,平面图形ABD由直角边长为1的等腰直角△AOD和扇形BOD组成,点P在线段AB上,PQ⊥AB,且PQ交AD或交于点Q.设AP=x(0<x<2),图中阴影部分表示的平面图形APQ(或APQD)的面积为y,则函数y关于x的大致图象是( )
A.B.
C.D.
9.(2021•辽宁)如图,在矩形ABCD中,AB=6,AD=4,E是CD的中点,射线AE与BC的延长线相交于点F,点M从A出发,沿A→B→F的路线匀速运动到点F停止.过点M作MN⊥AF于点N.设AN的长为x,△AMN的面积为S,则能大致反映S与x之间函数关系的图象是( )
A.B.
C.D.
10.(2021•苏州)如图,线段AB=10,点C、D在AB上,AC=BD=1.已知点P从点C出发,以每秒1个单位长度的速度沿着AB向点D移动,到达点D后停止移动.在点P移动过程中作如下操作:先以点P为圆心,PA、PB的长为半径分别作两个圆心角均为60°的扇形,再将两个扇形分别围成两个圆锥的侧面,设点P的移动时间为t(秒),两个圆锥的底面面积之和为S,则S关于t的函数图象大致是( )
A.B.
C.D.
11.(2021•甘肃)如图1,在△ABC中,AB=BC,BD⊥AC于点D(AD>BD).动点M从A点出发,沿折线AB→BC方向运动,运动到点C停止.设点M的运动路程为x,△AMD的面积为y,y与x的函数图象如图2,则AC的长为( )
A.3B.6C.8D.9
12.(2021•百色)如图,矩形ABCD各边中点分别是E、F、G、H,AB=2,BC=2,M为AB上一动点,过点M作直线l⊥AB,若点M从点A开始沿着AB方向移动到点B即停(直线l随点M移动),直线l扫过矩形内部和四边形EFGH外部的面积之和记为S.设AM=x,则S关于x的函数图象大致是( )
A.B.
C.D.
13.(2021•鄂尔多斯)如图①,在矩形ABCD中,H为CD边上的一点,点M从点A出发沿折线AH﹣HC﹣CB运动到点B停止,点N从点A出发沿AB运动到点B停止,它们的运动速度都是1cm/s,若点M、N同时开始运动,设运动时间为t(s),△AMN的面积为S(cm2),已知S与t之间函数图象如图②所示,则下列结论正确的是( )
①当0<t≤6时,△AMN是等边三角形.
②在运动过程中,使得△ADM为等腰三角形的点M一共有3个.
③当0<t≤6时,S=.
④当t=9+时,△ADH∽△ABM.
⑤当9<t<9+3时,S=﹣3t+9+3.
A.①③④B.①③⑤C.①②④D.③④⑤
14.(2021•通辽)如图,在矩形ABCD中,AB=4,BC=3,动点P,Q同时从点A出发,点P沿A→B→C的路径运动,点Q沿A→D→C的路径运动,点P,Q的运动速度相同,当点P到达点C时,点Q也随之停止运动,连接PQ.设点P的运动路程为x,PQ2为y,则y关于x的函数图象大致是( )
A.B.
C.D.
15.(2021•湖北)如图,AC为矩形ABCD的对角线,已知AD=3,CD=4,点P沿折线C﹣A﹣D以每秒1个单位长度的速度运动(运动到D点停止),过点P作PE⊥BC于点E,则△CPE的面积y与点P运动的路程x间的函数图象大致是( )
A.B.
C.D.
16.(2021•衡阳)如图1,菱形ABCD的对角线AC与BD相交于点O,P、Q两点同时从O点出发,以1厘米/秒的速度在菱形的对角线及边上运动.点P的运动路线为O﹣A﹣D﹣O,点Q的运动路线为O﹣C﹣B﹣O.设运动的时间为x秒,P、Q间的距离为y厘米,y与x的函数关系的图象大致如图2所示,当点P在A﹣D段上运动且P、Q两点间的距离最短时,P、Q两点的运动路程之和为 厘米.
17.(2021•武汉)如图(1),在△ABC中,AB=AC,∠BAC=90°,边AB上的点D从顶点A出发,向顶点B运动,同时,边BC上的点E从顶点B出发,向顶点C运动,D,E两点运动速度的大小相等,设x=AD,y=AE+CD,y关于x的函数图象如图(2),图象过点(0,2),则图象最低点的横坐标是 .
18.(2022•营口)如图1,在四边形ABCD中,BC∥AD,∠D=90°,∠A=45°,动点P,Q同时从点A出发,点P以cm/s的速度沿AB向点B运动(运动到B点即停止),点Q以2cm/s的速度沿折线AD→DC向终点C运动,设点Q的运动时间为x(s),△APQ的面积为y(cm2),若y与x之间的函数关系的图象如图2所示,当x=(s)时,则y= cm2.
挑战2023年中考数学选择、填空压轴真题汇编
专题03 动点问题的函数图象压轴真题训练
1.(2021•益阳)如图,已知▱ABCD的面积为4,点P在AB边上从左向右运动(不含端点),设△APD的面积为x,△BPC的面积为y,则y关于x的函数图象大致是( )
A.B.
C.D.
【答案】B
【解答】解:∵▱ABCD的面积为4,x+y是平行四边形面积的一半,
∴x+y=2,
∴y=2﹣x,
∴y是x的一次函数,
且当x=0时,y=2;x=2时,y=0;
故只有选项B符合题意.
故选:B.
2.(2021•河南)如图1,矩形ABCD中,点E为BC的中点,点P沿BC从点B运动到点C,设B,P两点间的距离为x,PA﹣PE=y,图2是点P运动时y随x变化的关系图象,则BC的长为( )
A.4B.5C.6D.7
【答案】C
【解答】解:由函数图象知:当x=0,即P在B点时,BA﹣BE=1.
利用三角形两边之差小于第三边,得到PA﹣PE≤AE.
∴y的最大值为AE,
∴AE=5.
在Rt△ABE中,由勾股定理得:BA2+BE2=AE2=25,
设BE的长度为t,
则BA=t+1,
∴(t+1)2+t2=25,
即:t2+t﹣12=0,
∴(t+4)(t﹣3)=0,
由于t>0,
∴t+4>0,
∴t﹣3=0,
∴t=3.
∴BC=2BE=2t=2×3=6.
故选:C.
3.(2022•鞍山)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4cm,CD⊥AB,垂足为点D,动点M从点A出发沿AB方向以cm/s的速度匀速运动到点B,同时动点N从点C出发沿射线DC方向以1cm/s的速度匀速运动.当点M停止运动时,点N也随之停止,连接MN.设运动时间为ts,△MND的面积为Scm2,则下列图象能大致反映S与t之间函数关系的是( )
A.B.
C.D.
【答案】B
【解答】解:∵∠ACB=90°,∠A=30°,AB=4,
∴∠B=60°,BC=AB=2,AC=BC=6,
∵CD⊥AB,
∴CD=AC=3,AD=CD=3,BD=BC=,
∴当M在AD上时,0≤t≤3,
MD=AD﹣AM=3﹣t,DN=DC+CN=3+t,
∴S=MD•DN=(3﹣t)(3+t)=﹣t2+,
当M在BD上时,3<t≤4,
MD=AM﹣AD=t﹣3,
∴S=MD•DN=(t﹣3)(3+t)=t2﹣,
故选:B.
4.(2022•菏泽)如图,等腰Rt△ABC与矩形DEFG在同一水平线上,AB=DE=2,DG=3,现将等腰Rt△ABC沿箭头所指方向水平平移,平移距离x是自点C到达DE之时开始计算,至AB离开GF为止.等腰Rt△ABC与矩形DEFG的重合部分面积记为y,则能大致反映y与x的函数关系的图象为( )
A.B.
C.D.
【答案】B
【解答】解:如图,作CH⊥AB于点H,
∵AB=2,△ABC是等腰直角三角形,
∴CH=1,
当0≤x≤1时,y=×2x•x=x2,
当1<x≤3时,y==1,
当3<x≤4时,y=1﹣=﹣(x﹣3)2+1,
故选:B.
5.(2022•鄂尔多斯)如图①,在正方形ABCD中,点M是AB的中点,点N是对角线BD上一动点,设DN=x,AN+MN=y,已知y与x之间的函数图象如图②所示,点E(a,2)是图象的最低点,那么a的值为( )
A.B.2C.D.
【答案】A
【解答】解:如图,连接AC交BD于点O,连接NC,连接MC交BD于点N′.
∵四边形ABCD是正方形,
∴O是BD的中点,
∵点M是AB的中点,
∴N′是△ABC的重心,
∴N′O=BO,
∴N′D=BD,
∵A、C关于BD对称,
∴NA=NC,
∴AN+MN=NC+MN,
∵当M、N、C共线时,y的值最小,
∴y的值最小就是MC的长,
∴MC=2,
设正方形的边长为m,则BM=m,
在Rt△BCM中,由勾股定理得:MC2=BC2+MB2,
∴20=m2+(m)2,
∴m=4,
∴BD=4,
∴a=N′D=BD=×4=,
故选:A.
6.(2021•鞍山)如图,△ABC是等边三角形,AB=6cm,点M从点C出发沿CB方向以1cm/s的速度匀速运动到点B,同时点N从点C出发沿射线CA方向以2cm/s的速度匀速运动,当点M停止运动时,点N也随之停止.过点M作MP∥CA交AB于点P,连接MN,NP,作△MNP关于直线MP对称的△MN′P,设运动时间为ts,△MN′P与△BMP重叠部分的面积为Scm2,则能表示S与t之间函数关系的大致图象为( )
A.B.
C.D.
【答案】A
【解答】解:如图1中,当点N′落在AB上时,取CN的中点T,连接MT.
∵CM=t(cm),CN=2t(cm),CT=TN,
∴CT=TN=t(cm),
∵△ABC是等边三角形,
∴∠C=∠A=60°,
∴△MCT是等边三角形,
∴TM=TC=TN,
∴∠CMN=90°,
∵MP∥AC,
∴∠BPM=∠A=∠MPN=60°,∠BMP=∠C=60°,∠C+∠CMP=180°,
∴∠CMP=120°,△BMP是等边三角形,
∴BM=MP,
∵∠CMP+∠MPN=180°,
∴CM∥PN,
∵MP∥CN,
∴四边形CMPN是平行四边形,
∴PM=CN=BM=2t,
∴3t=6,
∴t=2,
如图2中,当0<t≤2时,过点M作MK⊥AC于K,则MK=CM•sin60°=t,
∴S=•(6﹣t)•t=﹣t2+t.
如图3中,当2<t≤6时,S=•MQ•PQ=×(6﹣t)×(6﹣t)=×(6﹣t)2,
观察图象可知,选项A符合题意,
故选:A.
7.(2021•威海)如图,在菱形ABCD中,AB=2cm,∠D=60°,点P,Q同时从点A出发,点P以1cm/s的速度沿A﹣C﹣D的方向运动,点Q以2cm/s的速度沿A﹣B﹣C﹣D的方向运动,当其中一点到达D点时,两点停止运动.设运动时间为x(s),△APQ的面积为y(cm2),则下列图象中能大致反映y与x之间函数关系的是( )
A.B.
C.D.
【答案】A
【解答】解:∵四边形ABCD为菱形,
∴AB=BC=CD=DA=2cm,∠B=∠D=60°.
∴△ABC、△ACD都是等边三角形,
∴∠CAB=∠ACB=∠ACD=60°.
如图1所示,当0≤x≤1时,AQ=2xcm,AP=xcm,
作PE⊥AB于E,
∴PE=sin∠PAE×AP=(cm),
∴y=AQ•PE=×2x×=,
故D选项不正确;
如图2,当1<x≤2时,AP=xcm,CQ=(4﹣2x)cm,
作QF⊥AC于点F,
∴QF=sin∠ACB•CQ=(cm),
∴y===,
故B选项不正确;
如图3,当2<x≤3时,CQ=(2x﹣4)cm,CP=(x﹣2)cm,
∴PQ=CQ﹣CP=2x﹣4﹣x+2=(x﹣2)cm,
作AG⊥DC于点G,
∴AG=sin∠ACD•AC=×2=(cm),
∴y===.
故C选项不正确,
故选:A.
8.(2021•日照)如图,平面图形ABD由直角边长为1的等腰直角△AOD和扇形BOD组成,点P在线段AB上,PQ⊥AB,且PQ交AD或交于点Q.设AP=x(0<x<2),图中阴影部分表示的平面图形APQ(或APQD)的面积为y,则函数y关于x的大致图象是( )
A.B.
C.D.
【答案】D
【解答】解:当Q在AD上时,即点P在AO上时,有0<x≤1,
此时阴影部分为等腰直角三角形,
∴y=,
该函数是二次函数,且开口向上,排除B,C选项;
当点Q在弧BD上时,补全图形如图所示,
阴影部分的面积等于等腰直角△AOD的面积加上扇形BOD的面积,再减去平面图形PBQ的面积即减去弓形QBF的面积,
设∠QOB=θ,则∠QOF=2θ,
∴,S弓形QBF=﹣S△QOF,
当θ=45°时,AP=x=1+≈1.7,S弓形QBF=﹣=﹣,
y=+﹣(﹣)=≈1.14,
当θ=30°时,AP=x≈1.87,S弓形QBF=﹣=﹣,
y=+﹣(﹣)=≈1.24,
当θ=60°时,AP=x≈1.5,y≈0.98,
在A,D选项中分别找到这两个特殊值,对比发现,选项D符合题意.
故选:D.
法二、当1<x<2时,即P在OB之间时,设∠QOD=θ,则θ∈(0,),
则PQ=csθ,OP=sinθ,
则弧QD的长为θπ,
此时S阴影=+θπ+sinθcsθ=+θ+sin2θ,
∴y随x的增大而增大,而且增加的速度越来越慢,分析四个选项中的图象,只有选项D符合.
故选:D.
9.(2021•辽宁)如图,在矩形ABCD中,AB=6,AD=4,E是CD的中点,射线AE与BC的延长线相交于点F,点M从A出发,沿A→B→F的路线匀速运动到点F停止.过点M作MN⊥AF于点N.设AN的长为x,△AMN的面积为S,则能大致反映S与x之间函数关系的图象是( )
A.B.
C.D.
【答案】B
【解答】解:如图,
∵E是CD的中点,
∴CE=DE,
∵四边形ABCD是矩形,
∴∠D=∠DCF=90°,AD=BC=4,
在△ADE与△FCE中,
,
∴△ADE≌△FCE(SAS),
∴CF=AD=4,
∴BF=CF+BC=8,
∴AF=,
当点M在AB上时,
在Rt△AMN和Rt△AFB中,
tan∠NAM=,
∴NM=x=x,
∴△AMN的面积S=×x×x=x2,
∴当点M在AB上时,函数图象是开口向上、经过原点的抛物线的一部分;
当点M在BF上时,如图,
AN=x,NF=10﹣x,
在Rt△FMN和Rt△FBA中,
tan∠F=,
∴=﹣,
∴△AMN的面积S=
=﹣,
∴当点M在BF上时,函数图象是开口向下的抛物线的一部分;
故选:B.
10.(2021•苏州)如图,线段AB=10,点C、D在AB上,AC=BD=1.已知点P从点C出发,以每秒1个单位长度的速度沿着AB向点D移动,到达点D后停止移动.在点P移动过程中作如下操作:先以点P为圆心,PA、PB的长为半径分别作两个圆心角均为60°的扇形,再将两个扇形分别围成两个圆锥的侧面,设点P的移动时间为t(秒),两个圆锥的底面面积之和为S,则S关于t的函数图象大致是( )
A.B.
C.D.
【答案】D
【解答】解:∵AB=10,AC=BD=1,
∴CD=10﹣1﹣1=8,
∵PC=t,
∴AP=t+1,PB=8﹣t+1=9﹣t,
设围成的两个圆锥底面圆半径分别为r和R则:
2πr=;.
解得:r=,R=,
∴两个圆锥的底面面积之和为S=
=
=,
根据函数关系式可以发现该函数图象是一个开口向上的二次函数.
故选:D.
11.(2021•甘肃)如图1,在△ABC中,AB=BC,BD⊥AC于点D(AD>BD).动点M从A点出发,沿折线AB→BC方向运动,运动到点C停止.设点M的运动路程为x,△AMD的面积为y,y与x的函数图象如图2,则AC的长为( )
A.3B.6C.8D.9
【答案】B
【解答】解:由图2知,AB+BC=2,
∵AB=BC,
∴AB=,
∵AB=BC,BD⊥AC,
∴AC=2AD,∠ADB=90°,
在Rt△ABD中,AD²+BD²=AB²=13①,
设点M到AC的距离为h,
∴S△ADM=AD•h,
∵动点M从A点出发,沿折线AB→BC方向运动,
∴当点M运动到点B时,△ADM的面积最大,即h=BD,
由图2知,△ADM的面积最大为3,
∴AD•BD=3,
∴AD•BD=6②,
①+2×②得,AD²+BD²+2AD•BD=13+2×6=25,
∴(AD+BD)²=25,
∴AD+BD=5(负值舍去),
∴BD=5﹣AD③,
将③代入②得,AD(5﹣AD)=6,
∴AD=3或AD=2,
∵AD>BD,
∴AD=3,
∴AC=2AD=6,
故选:B.
12.(2021•百色)如图,矩形ABCD各边中点分别是E、F、G、H,AB=2,BC=2,M为AB上一动点,过点M作直线l⊥AB,若点M从点A开始沿着AB方向移动到点B即停(直线l随点M移动),直线l扫过矩形内部和四边形EFGH外部的面积之和记为S.设AM=x,则S关于x的函数图象大致是( )
A.B.
C.D.
【答案】D
【解答】解:①当M点运动在AE段,
此时S=S△HAE+S△GHD﹣S△EOM﹣S△GPS,
∵四边形ABCD是矩形,直线l⊥AB,H、E、F、G为AD、AB、BC、CD的中点,
∴AH=AD==1,AE=AB=,S△HAE=S△GHD,S△EOM=S△GPS,
∴S=2S△HAE﹣2S△EOM,
∴S△HAE=AE•AH=;
∵直线l⊥AB,
∴∠OME=∠A=90°,∠HEA=∠OEM,
∴△HAE∽△OME,
∴,
∴OM=,
又∵ME=AE﹣AM=﹣x,
∴OM=ME=,
∴S△EOM=,
∴S=2S△HAE﹣2S△EOM=,
此时,对应抛物线开口向下;
②当M点运动到在BE段,
此时,S=S△HAE+S△GHD+S△EO1M1+S△GP1S1,
即S=2S△HAE+2S△EO1M1,
与①同理,
O1M1=,
又∵M1E=AM1﹣AE=x﹣,
∴O1M1=M1E=,
∴S△EO1M1=,
∴S=2S△HAE+2S△EO1M1=,
此时,对应抛物线开口向上,
故选:D.
13.(2021•鄂尔多斯)如图①,在矩形ABCD中,H为CD边上的一点,点M从点A出发沿折线AH﹣HC﹣CB运动到点B停止,点N从点A出发沿AB运动到点B停止,它们的运动速度都是1cm/s,若点M、N同时开始运动,设运动时间为t(s),△AMN的面积为S(cm2),已知S与t之间函数图象如图②所示,则下列结论正确的是( )
①当0<t≤6时,△AMN是等边三角形.
②在运动过程中,使得△ADM为等腰三角形的点M一共有3个.
③当0<t≤6时,S=.
④当t=9+时,△ADH∽△ABM.
⑤当9<t<9+3时,S=﹣3t+9+3.
A.①③④B.①③⑤C.①②④D.③④⑤
【答案】A
【解答】解:由图②可知:点M、N两点经过6秒时,S最大,此时点M在点H处,点N在点B处并停止不动,如图,
①∵点M、N两点的运动速度为1cm/s,
∴AH=AB=6cm,
∵四边形ABCD是矩形,
∴CD=AB=6 cm.
∵当t=6s时,S=9 cm2,
∴×AB×BC=9.
∴BC=3 cm.
∵当6≤t≤9时,S=且保持不变,
∴点N在B处不动,点M在线段HC上运动,运动时间为(9﹣6)秒,
∴HC=3 cm,即点H为CD的中点.
∴BH= cm.
∴AB=AH=BH=6cm,
∴△ABM为等边三角形.
∴∠HAB=60°.
∵点M、N同时开始运动,速度均为1cm/s,
∴AM=AN,
∴当0<t≤6时,△AMN为等边三角形.
故①正确;
②如图,当点M在AD的垂直平分线上时,△ADM为等腰三角形:
此时有两个符合条件的点;
当AD=AM时,△ADM为等腰三角形,如图:
当DA=DM时,△ADM为等腰三角形,如图:
综上所述,在运动过程中,使得△ADM为等腰三角形的点M一共有4个.
∴②不正确;
③过点M作ME⊥AB于点E,如图,
由题意:AM=AN=t,
由①知:∠HAB=60°.
在Rt△AME中,
∵sin∠MAE=,
∴ME=AM•sin60°=tcm,
∴S=AN×ME= cm2.
∴③正确;
④当t=9+时,CM= cm,如图,
由①知:BC=3 cm,
∴MB=BC﹣CM=2 cm.
∵AB=6cm,
∴tan∠MAB=,
∴∠MAB=30°.
∵∠HAB=60°,
∴∠DAH=90°﹣60°=30°.
∴∠DAH=∠BAM.
∵∠D=∠B=90°,
∴△ADH∽△ABM.
∴④正确;
⑤当9<t<9+3时,此时点M在边BC上,如图,
此时MB=9+3﹣t,
∴S=×AB×MB=×6×(9+3﹣t)=27+9﹣3t.
∴⑤不正确;
综上,结论正确的有:①③④.
故选:A.
14.(2021•通辽)如图,在矩形ABCD中,AB=4,BC=3,动点P,Q同时从点A出发,点P沿A→B→C的路径运动,点Q沿A→D→C的路径运动,点P,Q的运动速度相同,当点P到达点C时,点Q也随之停止运动,连接PQ.设点P的运动路程为x,PQ2为y,则y关于x的函数图象大致是( )
A.B.
C.D.
【答案】C
【解答】解:当0≤x≤3时,在Rt△APQ中,∠QAP=90°,AP=AQ=x,
∴PQ2=2x2.
∴y=PQ2=2x2;
当3≤x≤4时,DQ=x﹣3,AP=x,
∴y=PQ2=32+32=18;
当4≤x≤7时,CP=7﹣x,CQ=7﹣x,
∴y=PQ2=CP2+CQ2=2x2﹣28x+98.
故选:C.
15.(2021•湖北)如图,AC为矩形ABCD的对角线,已知AD=3,CD=4,点P沿折线C﹣A﹣D以每秒1个单位长度的速度运动(运动到D点停止),过点P作PE⊥BC于点E,则△CPE的面积y与点P运动的路程x间的函数图象大致是( )
A.B.
C.D.
【答案】D
【解答】解:∵BC∥AD,
∴∠ACB=∠DAC,
∵∠PEC=∠D=90°,
∴△PCE∽△CAD,
∴==,
∵AD=3,CD=4,
∴AC==5,
∴当P在CA上时,即当0<x≤5时,
PE==x,
CE==x,
∴y=PE•CE==x2,
当P在AD上运动时,即当5<x≤8时,
PE=CD=4,
CE=8﹣x,
∴y=PE•CE=×4×(8﹣x)=16﹣2x,
综上,当0<x≤5时,函数图象为二次函数图象,且y随x增大而增大,当5<x≤8时,函数图象为一次函数图象,且y随x增大而减小,
故选:D.
16.(2021•衡阳)如图1,菱形ABCD的对角线AC与BD相交于点O,P、Q两点同时从O点出发,以1厘米/秒的速度在菱形的对角线及边上运动.点P的运动路线为O﹣A﹣D﹣O,点Q的运动路线为O﹣C﹣B﹣O.设运动的时间为x秒,P、Q间的距离为y厘米,y与x的函数关系的图象大致如图2所示,当点P在A﹣D段上运动且P、Q两点间的距离最短时,P、Q两点的运动路程之和为 厘米.
【答案】(2+3)
【解答】解:由图分析易知:当点P从O→A运动时,点Q从O→C运动时,y不断增大,
当点P运动到A点,点Q运动到C点时,由图象知此时y=PQ=2cm,
∴AC=2cm,
∵四边形ABCD为菱形,
∴AC⊥BD,OA=OC==cm,
当点P运动到D点,Q运动到B点,结合图象,易知此时,y=BD=2cm,
∴OD=OB=BD=1cm,
在Rt△ADO中,AD===2(cm),
∴AD=AB=BC=DC=2cm,
如图,当点P在A﹣D段上运动,点P运动到点E处,点Q在C﹣B段上运动,点Q运动到点F处时,P、Q两点的距离最短,
此时,OE=OF==,
AE=CF===,
∴当点P在A﹣D段上运动且P、Q两点间的距离最短时,P、Q两点的运动路程之和为:
(cm),
故答案为:(2+3).
17.(2021•武汉)如图(1),在△ABC中,AB=AC,∠BAC=90°,边AB上的点D从顶点A出发,向顶点B运动,同时,边BC上的点E从顶点B出发,向顶点C运动,D,E两点运动速度的大小相等,设x=AD,y=AE+CD,y关于x的函数图象如图(2),图象过点(0,2),则图象最低点的横坐标是 .
【答案】﹣1
【解答】解:∵图象过点(0,2),
即当x=AD=BE=0时,点D与A重合,点E与B重合,
此时y=AE+CD=AB+AC=2,
∵△ABC为等腰直角三角形,
∴AB=AC=1,
过点A作AF⊥BC于点F,过点B作NB⊥BC,并使得BN=AC,如图所示:
∵AD=BE,∠NBE=∠CAD,
∴△NBE≌△CAD(SAS),
∴NE=CD,
又∵y=AE+CD,
∴y=AE+CD=AE+NE,
当A、E、N三点共线时,y取得最小值,如图所示,此时:
AD=BE=x,AC=BN=1,
∴AF=AC•sin45°=,
\又∵∠BEN=∠FEA,∠NBE=∠AFE
∴△NBE∽△AFE
∴,即,
解得:x=,
∴图象最低点的横坐标为:﹣1.
故答案为:.
18.(2022•营口)如图1,在四边形ABCD中,BC∥AD,∠D=90°,∠A=45°,动点P,Q同时从点A出发,点P以cm/s的速度沿AB向点B运动(运动到B点即停止),点Q以2cm/s的速度沿折线AD→DC向终点C运动,设点Q的运动时间为x(s),△APQ的面积为y(cm2),若y与x之间的函数关系的图象如图2所示,当x=(s)时,则y= cm2.
【答案】
【解答】解:过点D作DE⊥AB,垂足为E,
在Rt△ADE中,
∵∠AED=90°,∠EAD=45°,
∴,
∵点P的速度为cm/s,点Q的速度为2cm/s,
∴AP=x,AQ=2x,
∴,
在△APQ和△AED中,
=,∠A=45°,
∴△AED∽△APQ,
∴点Q在AD上运动时,△APQ为等腰直角三角形,
∴AP=PQ=x,
∴当点Q在AD上运动时,y=AP•AQ=×x×x=x2,
由图像可知,当y=9此时面积最大,x=3或﹣3(负值舍去),
∴AD=2x=6cm,
当3<x≤4时,过点P作PF⊥AD于点F,如图:
此时S△APQ=S△APF+S四边形PQDF﹣S△ADQ,
在Rt△APF中,AP=x,∠PAF=45°,
∴AF=PF=x,FD=6﹣x,QD=2x﹣6,
∴S△APQ=x2+(x+2x﹣6)•(6﹣x)﹣×6×(2x﹣6),
即y=﹣x2+6x,
当x=时,y=﹣()2+6×=,
故答案为:.
最新中考数学压轴真题汇编 专题05 二次函数函数综合的压轴真题训练 (全国通用): 这是一份最新中考数学压轴真题汇编 专题05 二次函数函数综合的压轴真题训练 (全国通用),文件包含专题05二次函数函数综合的压轴真题训练原卷版docx、专题05二次函数函数综合的压轴真题训练解析版docx等2份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。
最新中考数学压轴真题汇编 专题04 反比例函数综合的压轴真题训练 (全国通用): 这是一份最新中考数学压轴真题汇编 专题04 反比例函数综合的压轴真题训练 (全国通用),文件包含专题04反比例函数综合的压轴真题训练原卷版docx、专题04反比例函数综合的压轴真题训练解析版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
最新中考数学压轴真题汇编 专题03 二次函数中面积问题压轴真题训练 (全国通用): 这是一份最新中考数学压轴真题汇编 专题03 二次函数中面积问题压轴真题训练 (全国通用),文件包含专题03二次函数中面积问题压轴真题训练原卷版docx、专题03二次函数中面积问题压轴真题训练解析版docx等2份试卷配套教学资源,其中试卷共82页, 欢迎下载使用。