中考数学压轴真题汇编(全国通用)专题07圆的综合问题真题压轴汇编(原卷版+解析)
展开一.圆与锐角三角函数综合
1.(2022•南充)如图,AB为⊙O的直径,点C是⊙O上一点,点D是⊙O外一点,∠BCD=∠BAC,连接OD交BC于点E.
(1)求证:CD是⊙O的切线.
(2)若CE=OA,sin∠BAC=,求tan∠CEO的值.
2.(2022•菏泽)如图,在△ABC中,以AB为直径作⊙O交AC、BC于点D、E,且D是AC的中点,过点D作DG⊥BC于点G,交BA的延长线于点H.
(1)求证:直线HG是⊙O的切线;
(2)若HA=3,csB=,求CG的长.
3.(2022•德州)如图1,在等腰三角形ABC中,AB=AC,O为底边BC的中点,过点O作OD⊥AB,垂足为D,以点O为圆心,OD为半径作圆,交BC于点M,N.
(1)AB与⊙O的位置关系为 ;
(2)求证:AC是⊙O的切线;
(3)如图2,连接DM,DM=4,∠A=96°,求⊙O的直径.(结果保留小数点后一位.参考数据:sin24°≈0.41,cs24°≈0.91,tan24°≈0.45)
4.(2022•河南)为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环⊙O与水平地面相切于点C,推杆AB与铅垂线AD的夹角为∠BAD,点O,A,B,C,D在同一平面内.当推杆AB与铁环⊙O相切于点B时,手上的力量通过切点B传递到铁环上,会有较好的启动效果.
(1)求证:∠BOC+∠BAD=90°.
(2)实践中发现,切点B只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B是该区域内最低位置,此时点A距地面的距离AD最小,测得cs∠BAD=.已知铁环⊙O的半径为25cm,推杆AB的长为75cm,求此时AD的长.
二.圆+相似三角形+勾股定理综合
5.(2022•温州)如图1,AB为半圆O的直径,C为BA延长线上一点,CD切半圆于点D,BE⊥CD,交CD延长线于点E,交半圆于点F,已知BC=5,BE=3,点P,Q分别在线段AB,BE上(不与端点重合),且满足=.设BQ=x,CP=y.
(1)求半圆O的半径.
(2)求y关于x的函数表达式.
(3)如图2,过点P作PR⊥CE于点R,连结PQ,RQ.
①当△PQR为直角三角形时,求x的值.
②作点F关于QR的对称点F′,当点F′落在BC上时,求的值.
6.(2022•泸州)如图,点C在以AB为直径的⊙O上,CD平分∠ACB交⊙O于点D,交AB于点E,过点D作⊙O的切线交CO的延长线于点F.
(1)求证:FD∥AB;
(2)若AC=2,BC=,求FD的长.
7.(2022•遂宁)如图⊙O是△ABC的外接圆,点O在BC上,∠BAC的角平分线交⊙O于点D,连接BD,CD,过点D作BC的平行线与AC的延长线相交于点P.
(1)求证:PD是⊙O的切线;
(2)求证:△ABD∽△DCP;
(3)若AB=6,AC=8,求点O到AD的距离.
8.(2022•锦州)如图,在⊙O中,AB为⊙O的直径,点E在⊙O上,D为的中点,连接AE,BD并延长交于点C.连接OD,在OD的延长线上取一点F,连接BF,使∠CBF=∠BAC.
(1)求证:BF为⊙O的切线;
(2)若AE=4,OF=,求⊙O的半径.
三.圆+相似三角形+锐角三角函数
9.(2022•安顺)如图,AB是⊙O的直径,点E是劣弧BD上一点,∠PAD=∠AED,且DE=,AE平分∠BAD,AE与BD交于点F.
(1)求证:PA是⊙O的切线;
(2)若tan∠DAE=,求EF的长;
(3)延长DE,AB交于点C,若OB=BC,求⊙O的半径.
10.(2022•黄石)如图CD是⊙O直径,A是⊙O上异于C,D的一点,点B是DC延长线上一点,连AB、AC、AD,且∠BAC=∠ADB.
(1)求证:直线AB是⊙O的切线;
(2)若BC=2OC,求tan∠ADB的值;
(3)在(2)的条件下,作∠CAD的平分线AP交⊙O于P,交CD于E,连PC、PD,若AB=2,求AE•AP的值.
四.切线+阴影面积
11.(2022•淮安)如图,△ABC是⊙O的内接三角形,∠ACB=60°,AD经过圆心O交⊙O于点E,连接BD,∠ADB=30°.
(1)判断直线BD与⊙O的位置关系,并说明理由;
(2)若AB=4,求图中阴影部分的面积.
12.(2022•徐州)如图,点A、B、C在圆O上,∠ABC=60°,直线AD∥BC,AB=AD,点O在BD上.
(1)判断直线AD与圆O的位置关系,并说明理由;
(2)若圆的半径为6,求图中阴影部分的面积.
13.(2022•攀枝花)如图,⊙O的直径AB垂直于弦DC于点F,点P在AB的延长线上,CP与⊙O相切于点C.
(1)求证:∠PCB=∠PAD;
(2)若⊙O的直径为4,弦DC平分半径OB,求:图中阴影部分的面积.
14.(2022•东营)如图,AB为⊙O的直径,点C为⊙O上一点,BD⊥CE于点D,BC平分∠ABD.
(1)求证:直线CE是⊙O的切线;
(2)若∠ABC=30°,⊙O的半径为2,求图中阴影部分的面积.
五.勾股定理+特殊角综合
15.(2022•宁夏)如图,以线段AB为直径作⊙O,交射线AC于点C,AD平分∠CAB交⊙O于点D,过点D作直线DE⊥AC于点E,交AB的延长线于点F.连接BD并延长交AC于点M.
(1)求证:直线DE是⊙O的切线;
(2)求证:AB=AM;
(3)若ME=1,∠F=30°,求BF的长.
16.(2022•陕西)如图,在△OAB中,∠OAB=90°,OA=2,AB=4.延长OA至点C,使AC=8,连接BC,以O为圆心,OB长为半径作⊙O,延长BA,与⊙O交于点E,作弦BF=BE,连接EF,与BO的延长线交于点D.
(1)求证:BC是⊙O的切线;
(2)求EF的长.
17.(2022•巴中)四边形ABCD内接于⊙O,直径AC与弦BD交于点E,直线PB与⊙O相切于点B.
(1)如图1,若∠PBA=30°,且EO=EA,求证:BA平分∠PBD;
(2)如图2,连接OB,若∠DBA=2∠PBA,求证:△OAB∽△CDE.
六.圆+相似三角形综合
18.(2022•内蒙古)如图,⊙O是△ABC的外接圆,EF与⊙O相切于点D,EF∥BC分别交AB,AC的延长线于点E和F,连接AD交BC于点N,∠ABC的平分线BM交AD于点M.
(1)求证:AD平分∠BAC;
(2)若AB:BE=5:2,AD=,求线段DM的长.
19.(2022•朝阳)如图,AC是⊙O的直径,弦BD交AC于点E,点F为BD延长线上一点,∠DAF=∠B.
(1)求证:AF是⊙O的切线;
(2)若⊙O的半径为5,AD是△AEF的中线,且AD=6,求AE的长.
20.(2022•绵阳)如图,AB为⊙O的直径,C为圆上的一点,D为劣弧的中点,过点D作⊙O的切线与AC的延长线交于点P,与AB的延长线交于点F,AD与BC交于点E.
(1)求证:BC∥PF;
(2)若⊙O的半径为,DE=1,求AE的长度;
(3)在(2)的条件下,求△DCP的面积.
21.(2022•西宁)如图,在Rt△ABC中,∠C=90°,点D在AB上,以BD为直径的⊙O与AC相切于点E,交BC于点F,连接DF,OE交于点M.
(1)求证:四边形EMFC是矩形;
(2)若AE=,⊙O的半径为2,求FM的长.
22.(2022•青海)如图,AB是⊙O的直径,AC是⊙O的弦,AD平分∠CAB交⊙O于点D,过点D作⊙O的切线EF,交AB的延长线于点E,交AC的延长线于点F.
(1)求证:AF⊥EF;
(2)若CF=1,AC=2,AB=4,求BE的长.
23.(2022•广西)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E,延长BA交⊙O于点F.
(1)求证:DE是⊙O的切线;
(2)若=,AF=10,求⊙O的半径.
挑战2023年中考数学解答题压轴真题汇编
专题07 圆的综合问题真题压轴汇编
一.圆与锐角三角函数综合
1.(2022•南充)如图,AB为⊙O的直径,点C是⊙O上一点,点D是⊙O外一点,∠BCD=∠BAC,连接OD交BC于点E.
(1)求证:CD是⊙O的切线.
(2)若CE=OA,sin∠BAC=,求tan∠CEO的值.
【解答】(1)证明:连接OC,
∵AB是直径,
∴∠ACB=90°,
∴∠A+∠B=90°,
∵OC=OB,
∴∠OCB=∠OBC,
∵∠BCD=∠BAC,
∴∠OCB+∠DCB=90°,
∴OC⊥CD,
∵OC为⊙O的半径,
∴CD是⊙O的切线;
(2)解:过点O作OH⊥BC于点H.
∵sin∠BAC==,
∴可以假设BC=4k,AB=5k,则AO=OC=CE=2.5k,
∵OH⊥BC,OC=OB
∴CH=BH=2k,
∵OA=OB,AC2=AB2﹣BC2,
∴OH=AC=k,
∴EH=CE﹣CH=2.5k﹣2k=0.5k,
∴tan∠CEO===3.
2.(2022•菏泽)如图,在△ABC中,以AB为直径作⊙O交AC、BC于点D、E,且D是AC的中点,过点D作DG⊥BC于点G,交BA的延长线于点H.
(1)求证:直线HG是⊙O的切线;
(2)若HA=3,csB=,求CG的长.
【解答】(1)证明:连接OD,
∵AD=DC,AO=OB,
∴OD是△ABC的中位线,
∴OD∥BC,OD=BC,
∵DG⊥BC,
∴OD⊥HG,
∵OD是⊙O的半径,
∴直线HG是⊙O的切线;
(2)解:设⊙O的半径为x,则OH=x+3,BC=2x,
∵OD∥BC,
∴∠HOD=∠B,
∴cs∠HOD=,即==,
解得:x=2,
∴BC=4,BH=7,
∵csB=,
∴=,即=,
解得:BG=,
∴CG=BC﹣BG=4﹣=.
3.(2022•德州)如图1,在等腰三角形ABC中,AB=AC,O为底边BC的中点,过点O作OD⊥AB,垂足为D,以点O为圆心,OD为半径作圆,交BC于点M,N.
(1)AB与⊙O的位置关系为 相切 ;
(2)求证:AC是⊙O的切线;
(3)如图2,连接DM,DM=4,∠A=96°,求⊙O的直径.(结果保留小数点后一位.参考数据:sin24°≈0.41,cs24°≈0.91,tan24°≈0.45)
【解答】(1)解:∵OD⊥AB,点O为圆心,OD为半径,
∴直线AB到圆心O的距离等于圆的半径,
∴AB为⊙O的切线,
∴AB与⊙O的位置关系为相切,
故答案为:相切;
(2)证明:过点O作OE⊥AC于点E,连接OA,如图,
∵AB=AC,O为底边BC的中点,
∴AO为∠BAC的平分线,
∵OD⊥AB,OE⊥AC,
∴OD=OE,
∵OD为⊙O的半径,
∴OE为⊙O的半径,
这样,直线AC到圆心O的距离等于圆的半径,
∴AC是⊙O的切线;
(3)解:过点O作OF⊥DM于点F,如图,
∵AB=AC,∠A=96°,
∴∠B=∠C==42°,
∵OD⊥AB,
∴∠BOD=90°﹣∠B=48°.
∵OF⊥DM,
∴DF=MF=DM=2,
∵OD=OM,OF⊥DM,
∴OF为∠DOM的平分线,
∴∠DOF=∠BOD=24°.
在Rt△ODF中,
∵sin∠DOF=,
∴sin24°=,
∴OD=≈≈4.9,
∴⊙O的直径=2OD=2×4.9=9.8.
4.(2022•河南)为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环⊙O与水平地面相切于点C,推杆AB与铅垂线AD的夹角为∠BAD,点O,A,B,C,D在同一平面内.当推杆AB与铁环⊙O相切于点B时,手上的力量通过切点B传递到铁环上,会有较好的启动效果.
(1)求证:∠BOC+∠BAD=90°.
(2)实践中发现,切点B只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B是该区域内最低位置,此时点A距地面的距离AD最小,测得cs∠BAD=.已知铁环⊙O的半径为25cm,推杆AB的长为75cm,求此时AD的长.
【解答】( 1)证明:方法1:如图1,过点B作EF∥CD,分别交AD于点E,交OC于点F.
∵CD与⊙O相切于点C,
∴∠OCD=90°.
∵AD⊥CD,
∴∠ADC=90°.
∵EF∥CD,
∴∠OFB=∠AEB=90°,
∴∠BOC+∠OBF=90°,∠ABE+∠BAD=90°,
∵AB为⊙O的切线,
∴∠OBA=90°.
∴∠OBF+∠ABE=90°,
∴∠OBF=∠BAD,
∴∠BOC+∠BAD=90°;
方法2:如图2,延长OB交CD于点M.
∵CD与⊙O相切于点C,
∴∠OCM=90°,
∴∠BOC+∠BMC=90°,
∵AD⊥CD,
∴∠ADC=90°.
∵AB为⊙O的切线,
∴∠OBA=90°,
∴∠ABM=90°.
∴在四边形ABMD中,∠BAD+∠BMD=180°.
∵∠BMC+∠BMD=180°,
∴∠BMC=∠BAD.
∴∠BOC+∠BAD=90°;
方法3:如图3,过点B作BN∥AD,
∴∠NBA=∠BAD.
∵CD与⊙O相切于点C,
∴∠OCD=90°,
∵AD⊥CD,
∴∠ADC=90°.
∴AD∥OC,
∴BN∥OC,
∴∠NBO=∠BOC.
∵AB为OO的切线,
∴∠OBA=90°,
∴∠NBO+∠NBA=90°,
∴∠BOC+∠BAD=90°.
(2)解:如图1,在Rt△ABE中,
∵AB=75,cs∠BAD=,
∴AE=45.
由(1)知,∠OBF=∠BAD,
∴cs∠OBF=,
在Rt△OBF中,
∵OB=25,
∴BF=15,
∴OF=20.
∵OC=25,
∴CF=5.
∵∠OCD=∠ADC=∠CFE=90°,
∴四边形CDEF为矩形,
∴DE=CF=5,
∴AD=AE+ED=50cm.
二.圆+相似三角形+勾股定理综合
5.(2022•温州)如图1,AB为半圆O的直径,C为BA延长线上一点,CD切半圆于点D,BE⊥CD,交CD延长线于点E,交半圆于点F,已知BC=5,BE=3,点P,Q分别在线段AB,BE上(不与端点重合),且满足=.设BQ=x,CP=y.
(1)求半圆O的半径.
(2)求y关于x的函数表达式.
(3)如图2,过点P作PR⊥CE于点R,连结PQ,RQ.
①当△PQR为直角三角形时,求x的值.
②作点F关于QR的对称点F′,当点F′落在BC上时,求的值.
【解答】解:(1)如图1,连接OD,设半径为r,
∵CD切半圆于点D,
∴OD⊥CD,
∵BE⊥CD,
∴OD∥BE,
∴△COD∽△CBE,
∴,
∴,
解得r=,
∴半圆O的半径为;
(2)由(1)得,CA=CB﹣AB=5﹣2×=,
∵=,BQ=x,
∴AP=,
∴CP=AP+AC,
∴y=;
(3)①显然∠PRQ<90°,所以分两种情形,
当∠RPQ=90°时,则四边形RPQE是矩形,
∴PR=QE,
∵PR=PC×sinC=,
∴,
∴x=,
当∠PQR=90°时,过点P作PH⊥BE于点H,如图,
则四边形PHER是矩形,
∴PH=RE,EH=PR,
∵CR=CP•csC=,
∴PH=RE=3﹣x=EQ,
∴∠EQR=∠ERQ=45°,
∴∠PQH=45°=∠QPH,
∴HQ=HP=3﹣x,
由EH=PR得:(3﹣x)+(3﹣x)=,
∴x=,
综上,x的值为或;
②如图,连接AF,QF',由对称可知QF=QF',
∵CP=,
∴CR=x+1,
∴ER=3﹣x,
∵BQ=x,
∴EQ=3﹣x,
∴ER=EQ,
∴∠F'QR=∠EQR=45°,
∴∠BQF'=90°,
∴QF=QF'=BQ•tanB=,
∵AB是半圆O的直径,
∴∠AFB=90°,
∴BF=AB•csB=,
∴,
∴x=,
∴.
6.(2022•泸州)如图,点C在以AB为直径的⊙O上,CD平分∠ACB交⊙O于点D,交AB于点E,过点D作⊙O的切线交CO的延长线于点F.
(1)求证:FD∥AB;
(2)若AC=2,BC=,求FD的长.
【解答】(1)证明:连接OD.
∵DF是⊙O的切线,
∴OD⊥DF,
∵CD平分∠ACB,
∴=,
∴OD⊥AB,
∴AB∥DF;
(2)解:过点C作CH⊥AB于点H.
∵AB是直径,
∴∠ACB=90°,
∵BC=,AC=2,
∴AB===5,
∵S△ABC=•AC•BC=•AB•CH,
∴CH==2,
∴BH==1,
∴OH=OB﹣BH=﹣1=,
∵DF∥AB,
∴∠COH=∠F,
∵∠CHO=∠ODF=90°,
∴△CHO∽△ODF,
∴=,
∴=,
∴DF=.
7.(2022•遂宁)如图⊙O是△ABC的外接圆,点O在BC上,∠BAC的角平分线交⊙O于点D,连接BD,CD,过点D作BC的平行线与AC的延长线相交于点P.
(1)求证:PD是⊙O的切线;
(2)求证:△ABD∽△DCP;
(3)若AB=6,AC=8,求点O到AD的距离.
【解答】(1)证明:如图1,连接OD.
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴=,
∴∠BOD=∠COD=90°,
∵BC∥PD,
∴∠ODP=∠BOD=90°,
∴OD⊥PD,
∵OD是半径,
∴PD是⊙O的切线.
(2)证明:∵BC∥PD,
∴∠PDC=∠BCD.
∵∠BCD=∠BAD,
∴∠BAD=∠PDC,
∵∠ABD+∠ACD=180°,∠ACD+∠PCD=180°,
∴∠ABD=∠PCD,
∴△ABD∽△DCP;
(3)解法一:如图,过点O作OE⊥AD于E,连接OD,
∵BC是⊙O的直径,
∴∠BAC=∠BDC=90°,
∵AB=6,AC=8,
∴BC==10,
∵BD=CD,
∴BD=CD=5,
由(2)知:△ABD∽△DCP,
∴=,即=,
∴CP=,
∴AP=AC+CP=8+=,
∵∠ADB=∠ACB=∠P,∠BAD=∠DAP,
∴△BAD∽△DAP,
∴=,即=,
∴AD2=6×=98,
∴AD=7,
∵OE⊥AD,
∴DE=AD=,
∴OE===,
即点O到AD的距离是.
解法二:如图,过点D作DM⊥AB于M,DN⊥AC于N,过点O作OE⊥AD于E,连接OD,则∠M=∠CND=90°,
∵AD平分∠BAC,∠BAC=90°,
∴DM=DN,∠DAM=∠CAD=45°,
∵A,B,D,C四点共圆,
∴∠DBM=∠DCN,
∴△DCN≌△DBM(AAS),
∴CN=BM,
同理得:AM=AN,
∵AB=6,AC=8,
∴AM=DM=7,
∴AD=7,
由解法一可得:OE=.
即点O到AD的距离是.
8.(2022•锦州)如图,在⊙O中,AB为⊙O的直径,点E在⊙O上,D为的中点,连接AE,BD并延长交于点C.连接OD,在OD的延长线上取一点F,连接BF,使∠CBF=∠BAC.
(1)求证:BF为⊙O的切线;
(2)若AE=4,OF=,求⊙O的半径.
【解答】(1)证明:如图,连接AD,
AB是圆的直径,则∠ADB=90°,
D为的中点,则∠BAD=∠CAD=∠BAC,
∵,
∴∠CBF=∠BAD,
∵∠BAD+∠ABD=90°,
∴∠ABF=∠ABD+∠CBF=90°,
∴AB⊥BF,
∵OB是⊙O的半径,
∴BF是⊙O的切线;
(2)解:如图,连接BE,
AB是圆的直径,则∠AEB=90°,
∵∠BOD=2∠BAD,∠BAC=2∠BAD,
∴∠BOD=∠BAC,
又∵∠ABF=∠AEB=90°,
∴△OBF∽△AEB,
∴OB:AE=OF:AB,
∴OB:4=:2OB,OB2=9,
OB>0,则OB=3,
∴⊙O的半径为3.
三.圆+相似三角形+锐角三角函数
9.(2022•安顺)如图,AB是⊙O的直径,点E是劣弧BD上一点,∠PAD=∠AED,且DE=,AE平分∠BAD,AE与BD交于点F.
(1)求证:PA是⊙O的切线;
(2)若tan∠DAE=,求EF的长;
(3)延长DE,AB交于点C,若OB=BC,求⊙O的半径.
【解答】(1)证明:∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠DAB+∠ABD=90°,
∵∠PAD=∠AED,∠AED=∠ABD,
∴∠PAD=∠ABD,
∴∠DAB+∠PAD=90°,即∠PAB=90°,
∴AB⊥PA,
∵AB是⊙O的直径,
∴PA是⊙O的切线;
(2)解:连接BE,如图:
∵AB是⊙O的直径,
∴∠AEB=90°,
∵AE平分∠BAD,
∴∠DAE=∠BAE,
∴=,∠DAE=∠BAE=∠DBE,
∴BE=DE=,tan∠DAE=tan∠BAE=tan∠DBE==,
∴=,
∴EF=1;
(3)解:连接OE,如图:
∵OE=OA,
∴∠AEO=∠OAE,
∵∠OAE=∠DAE,
∴∠AEO=∠DAE,
∴OE∥AD,
∴=,
∵OA=OB=BC,
∴=2,
∴=2,
∵DE=,
∴CE=2,CD=CE+DE=3
设BC=OB=OA=R,
∵∠BDC=∠BAE,∠C=∠C,
∴△CBD∽△CEA,
∴=,即=,
∴R=2,
∴⊙O的半径是2.
10.(2022•黄石)如图CD是⊙O直径,A是⊙O上异于C,D的一点,点B是DC延长线上一点,连AB、AC、AD,且∠BAC=∠ADB.
(1)求证:直线AB是⊙O的切线;
(2)若BC=2OC,求tan∠ADB的值;
(3)在(2)的条件下,作∠CAD的平分线AP交⊙O于P,交CD于E,连PC、PD,若AB=2,求AE•AP的值.
【解答】(1 )证明:连接OA,
∵CD是⊙O的直径,
∴∠CAD=90°,
∴∠OAC+∠OAD=90°,
又∵OA=OD,
∴∠OAD=∠ODA,
又∵∠BAC=∠ADB,
∴∠BAC+∠OAC=90°,
即∠BAO=90°,
∴AB⊥OA,
又∵OA为半径,
∴直线AB是⊙O的切线;
(2)解:∵∠BAC=∠ADB,∠B=∠B,
∴△BCA∽△BAD,
∴,
设半径OC=OA=r,
∵BC=2OC,
∴BC=2r,OB=3r,
在Rt△BAO中,
AB=,
在Rt△CAD中,
tan∠ADC=;
(3)解:在(2)的条件下,AB=2r=2,
∴r=,
∴CD=2,
在Rt△CAD中,
,AC2+AD2=CD2,
解得AC=2,AD=2,
∵AP平分∠CAD,
∴∠CAP=∠EAD,
又∵∠APC=∠ADE,
∴△CAP∽△EAD,
∴,
∴AE•AP=AC•AD=2×2=4.
四.切线+阴影面积
11.(2022•淮安)如图,△ABC是⊙O的内接三角形,∠ACB=60°,AD经过圆心O交⊙O于点E,连接BD,∠ADB=30°.
(1)判断直线BD与⊙O的位置关系,并说明理由;
(2)若AB=4,求图中阴影部分的面积.
【解答】解:(1)直线BD与⊙O相切,
理由:连接BE,
∵∠ACB=60°,
∴∠AEB=∠C=60°,
连接OB,
∵OB=OE,
∴△OBE是等边三角形,
∴∠BOD=60°,
∵∠ADB=30°,
∴∠OBD=180°﹣60°﹣30°=90°,
∴OB⊥BD,
∵OB是⊙O的半径,
∴直线BD与⊙O相切;
(2)∵AE是⊙O的直径,
∴∠ABE=90°,
∵AB=4,
∴sin∠AEB=sin60°===,
∴AE=8,
∴OB=4,
∴BD=OB=4,
∴图中阴影部分的面积=S△OBD﹣S扇形BOE=4×﹣=8﹣.
12.(2022•徐州)如图,点A、B、C在圆O上,∠ABC=60°,直线AD∥BC,AB=AD,点O在BD上.
(1)判断直线AD与圆O的位置关系,并说明理由;
(2)若圆的半径为6,求图中阴影部分的面积.
【解答】解:(1)直线AD与圆O相切,
连接OA,
∵AD∥BC,
∴∠D=∠DBC,
∵AD=AB,
∴∠D=∠ABD,
∴∠DBC=∠ABD=30°,
∠BAD=120°,
∵OA=OB,
∴∠BAO=∠ABD=30°,
∴∠OAD=90°,
∴OA⊥AD,
∵OA是圆的半径,
∴直线AD与圆O相切,
(2)连接OC,作OH⊥BC于H,
∵OB=OC,
∴∠OCB=∠OBC=30°,
∴∠BOC=120°,
∴OH=OB=3,BH=OH=3,
∴BC=2BH=6,
∴扇形OBC的面积为:==12π,
∵S△OBC=BC•OH=×6×3=9,
∴阴影部分的面积为:12π﹣9.
13.(2022•攀枝花)如图,⊙O的直径AB垂直于弦DC于点F,点P在AB的延长线上,CP与⊙O相切于点C.
(1)求证:∠PCB=∠PAD;
(2)若⊙O的直径为4,弦DC平分半径OB,求:图中阴影部分的面积.
【解答】(1)证明:连接OC,
∵CP与⊙O相切,
∴OC⊥PC,
∴∠PCB+∠OCB=90°,
∵AB⊥DC,
∴∠PAD+∠ADF=90°,
∵OB=OC,
∴∠OBC=∠OCB,
由圆周角定理得:∠ADF=∠OBC,
∴∠PCB=∠PAD;
(2)解:连接OD,
在Rt△ODF中,OF=OD,
则∠ODF=30°,
∴∠DOF=60°,
∵AB⊥DC,
∴DF=FC,
∵BF=OF,AB⊥DC,
∴S△CFB=S△DFO,
∴S阴影部分=S扇形BOD==π.
14.(2022•东营)如图,AB为⊙O的直径,点C为⊙O上一点,BD⊥CE于点D,BC平分∠ABD.
(1)求证:直线CE是⊙O的切线;
(2)若∠ABC=30°,⊙O的半径为2,求图中阴影部分的面积.
【解答】(1)证明:连接OC,
∵OB=OC,
∴∠OBC=∠OCB,
∵BC平分∠ABD,
∴∠OBC=∠DBC,
∴∠DBC=∠OCB,
∴OC∥BD,
∵BD⊥CE,
∴OC⊥CE,
∵OC为⊙O的半径,
∴CE是⊙O的切线;
(2)解:过点O作OH⊥BC于H,
则BH=HC,
在Rt△OHB中,∠OBH=30°,OB=2,
∴BH=OB•cs∠OBH=2×=,OH=OB=1,
∴BC=2,
∵OB=OC,
∴∠OCB=∠OBC=30°,
∴∠BOC=120°,
∴S阴影部分=S扇形BOC﹣S△BOC
=﹣×2×1
=﹣.
五.勾股定理+特殊角综合
15.(2022•宁夏)如图,以线段AB为直径作⊙O,交射线AC于点C,AD平分∠CAB交⊙O于点D,过点D作直线DE⊥AC于点E,交AB的延长线于点F.连接BD并延长交AC于点M.
(1)求证:直线DE是⊙O的切线;
(2)求证:AB=AM;
(3)若ME=1,∠F=30°,求BF的长.
【解答】(1)证明:连接OD,则OD=OA,
∴∠ODA=∠OAD,
∵AD平分∠CAB,
∴∠OAD=∠DAC,
∴∠ODA=∠DAC,
∴OD∥AC,
∵DE⊥AC,
∴∠ODF=∠AED=90°,
∵OD是⊙O的半径,且DE⊥OD,
∴直线DE是⊙O的切线.
(2)证明:∵线段AB是⊙O的直径,
∴∠ADB=90°,
∴∠ADM=180°﹣∠ADB=90°,
∴∠M+∠DAM=90°,∠ABM+∠DAB=90°,
∵∠DAM=∠DAB,
∴∠M=∠ABM,
∴AB=AM.
(3)解:∵∠AEF=90°,∠F=30°,
∴∠BAM=60°,
∴△ABM是等边三角形,
∴∠M=60°,
∵∠DEM=90°,ME=1,
∴∠EDM=30°,
∴MD=2ME=2,
∴BD=MD=2,
∵∠BDF=∠EDM=30°,
∴∠BDF=∠F,
∴BF=BD=2.
16.(2022•陕西)如图,在△OAB中,∠OAB=90°,OA=2,AB=4.延长OA至点C,使AC=8,连接BC,以O为圆心,OB长为半径作⊙O,延长BA,与⊙O交于点E,作弦BF=BE,连接EF,与BO的延长线交于点D.
(1)求证:BC是⊙O的切线;
(2)求EF的长.
【解答】(1)证明:∵OA=2,AB=4,AC=8,
∴,
∵∠OAB=∠BAC=90°,
∴△OAB∽△BAC,
∴∠BOA=∠ABC,
∵∠OBA+∠BOA=90°,
∴∠OBA+∠ABC=90°,
即∠OBC=90°,
∵OB为⊙O的半径,
∴BC是⊙O的切线;
(2)解:如图,过点O作OG⊥BF于点G,
∵OG⊥BF,OA⊥BE,弦BF=BE,
∴BG=AB,
∵OB=OB,
∴Rt△BOG≌Rt△BOA(HL),
∴∠FBD=∠EBD,即BD平分∠FBE,
∵BF=BE,即△BEF为等腰三角形,
∴BD⊥EF,DF=DE,
∵OA=2,AB=4,
∴,
在Rt△ABO中,sin∠OBA==,
在Rt△BDE中,sin∠DBE=,
∴DE=
∴EF=.
17.(2022•巴中)四边形ABCD内接于⊙O,直径AC与弦BD交于点E,直线PB与⊙O相切于点B.
(1)如图1,若∠PBA=30°,且EO=EA,求证:BA平分∠PBD;
(2)如图2,连接OB,若∠DBA=2∠PBA,求证:△OAB∽△CDE.
【解答】(1)证明:连接OB,
∵直线PB与⊙O相切于点B,
∴∠PBO=90°.
∴∠PBA+∠ABO=90°.
∵∠PBA=30°,
∴∠ABO=60°.
又∵OA=OB,
∴△AOB为等边三角形.
又∵OE=AE,
∴BE平分∠ABO.
∴,
∴BA平分∠PBD;
(2)证明:∵直线PB与⊙O相切于点B,
∴∠PBO=90°.
∴∠PBA+∠ABO=90°.
∵AC为直径,
∴∠ABC=90°.
∴∠OBC+∠ABO=90°.
∴∠OBC=∠PBA.
∵OB=OC,
∴∠PBA=∠OBC=∠OCB.
∴∠AOB=2∠OCB=2∠PBA.
∵∠ACD=∠ABD=2∠PBA,
∴∠AOB=∠ACD,
又∵∠BAO=∠BDC,
∴△OAB∽△CDE.
六.圆+相似三角形综合
18.(2022•内蒙古)如图,⊙O是△ABC的外接圆,EF与⊙O相切于点D,EF∥BC分别交AB,AC的延长线于点E和F,连接AD交BC于点N,∠ABC的平分线BM交AD于点M.
(1)求证:AD平分∠BAC;
(2)若AB:BE=5:2,AD=,求线段DM的长.
【解答】(1)证明:连接OD,如图,
∵EF与⊙O相切于点D,
∴OD⊥EF,
∵BC∥EF,
∴OD⊥BC,
∴,
∴∠BAD=∠CAD,
∴AD平分∠BAC;
(2)解:∵AB:BE=5:2,,EF∥BC,
∴=,
∴DN=,
∵∠BAD=∠CAD=∠CBD,
又∵∠BDN=∠ADB,
∴△BDN∽△ADB,
∴,即:,
∴BD=2(负值舍去),
∵∠ABC的平分线BM交AD于点M,
∴∠ABM=∠CBM,
∴∠ABM+∠BAD=∠CBM+∠CBD,即:∠BMD=∠DBM,
∴DM=BD=2.
19.(2022•朝阳)如图,AC是⊙O的直径,弦BD交AC于点E,点F为BD延长线上一点,∠DAF=∠B.
(1)求证:AF是⊙O的切线;
(2)若⊙O的半径为5,AD是△AEF的中线,且AD=6,求AE的长.
【解答】(1)证明:∵AC是直径,
∴∠ADC=90°,
∴∠ACD+∠DAC=90°,
∵∠ACD=∠B,∠B=∠DAF,
∴∠DAF+∠DAC=90°,
∴OA⊥AF,
∵OA是半径,
∴AF是⊙O的切线;
(2)解:作DH⊥AC于点H,
∵⊙O的半径为5,
∴AC=10,
∵∠AHD=∠ADC,∠DAH=∠CAD,
∴△ADH∽△ACD,
∴,
∴AD2=AH•AC,
∴AH=,
∵AD是△AEF的中线,∠EAF=90°,
∴AD=ED,
∴AE=2AH=.
20.(2022•绵阳)如图,AB为⊙O的直径,C为圆上的一点,D为劣弧的中点,过点D作⊙O的切线与AC的延长线交于点P,与AB的延长线交于点F,AD与BC交于点E.
(1)求证:BC∥PF;
(2)若⊙O的半径为,DE=1,求AE的长度;
(3)在(2)的条件下,求△DCP的面积.
【解答】(1)证明:连接OD,如图,
∵D为劣弧的中点,
∴,
∴OD⊥BC.
∵PF是⊙O的切线,
∴OD⊥PF,
∴BC∥PF;
(2)连接OD,BD,如图,
设AE=x,则AD=1+x.
∵D为劣弧的中点,
∴,
∴CD=BD,∠DCB=∠CAD.
∵∠CDE=∠ADC,
∴△CDE∽△ADC,
∴,
∴CD2=DE•AD=1×(1+x)=1+x.
∴BD2=1+x.
∵AB为⊙O的直径,
∴∠ADB=90°,
∴AD2+BD2=AB2.
∵⊙O的半径为,
∴AB=2.
∴,
解得:x=3或x=﹣6(不合题意,舍去),
∴AE=3.
(3)连接OD,BD,设OD与BC交于点H,如图,
由(2)知:AE=3,AD=AE+DE=4,DB==2,
∵∠ADB=90°,
∴cs∠DAB==.
∵OA=OD,
∴∠DAB=∠ADO,
∴cs∠ADO=cs∠DAB=.
∵OH⊥BC,
∴BH=CH,cs∠ADO=,
∴DH=DE×=.
∴OH=OD﹣DH=﹣=.
∴BH==,
∴CH=BH=.
∵AB为⊙O的直径,
∴∠ACB=90°,
由(1)知:OD⊥PD,OH⊥BC,
∴四边形CHDP为矩形,
∴∠P=90°,CP=DH=,DP=CH=,
∴△DCP的面积=CP•DP=.
21.(2022•西宁)如图,在Rt△ABC中,∠C=90°,点D在AB上,以BD为直径的⊙O与AC相切于点E,交BC于点F,连接DF,OE交于点M.
(1)求证:四边形EMFC是矩形;
(2)若AE=,⊙O的半径为2,求FM的长.
【解答】(1)证明:∵BD是⊙O的直径,
∴∠BFD=90°,
∴∠CFD=90°.
∵⊙O与AC相切于点E,
∴OE⊥AC,
∴∠OEC=∠OEA=90°.
又∵∠C=90°,
∴∠C=∠CFD=∠OEC=90°,
∴∠EMF=90°,
∴四边形EMFC是矩形.
(2)解:在Rt△AEO中,∠AEO=90°,AE=,OE=2,
∴OA===3,
∴AB=OA+OB=3+2=5.
∵∠AEO=∠C=90°,
∴OE∥BC,
∴△AEO∽△ACB,
∴=,即=,
∴AC=,
∴CE=AC﹣AE=﹣=.
又∵四边形EMFC是矩形,
∴FM=CE=.
22.(2022•青海)如图,AB是⊙O的直径,AC是⊙O的弦,AD平分∠CAB交⊙O于点D,过点D作⊙O的切线EF,交AB的延长线于点E,交AC的延长线于点F.
(1)求证:AF⊥EF;
(2)若CF=1,AC=2,AB=4,求BE的长.
【解答】(1)证明:连接OD,如图:
∵AD平分∠CAB,
∴∠FAD=∠OAD,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠FAD=∠ODA,
∴OD∥AF,
∵EF是⊙O的切线,OD是⊙O的半径,
∴OD⊥EF,
∴AF⊥EF;
(2)解:连接CO并延长交⊙O于K,连接DK,DC,如图:
∵CK是⊙O的直径,
∴∠CDK=90°,
∴∠K+∠DCK=90°,
∵OD⊥EF,
∴∠ODF=90°,即∠ODC+∠CDF=90°,
∵OC=OD,
∴∠DCK=∠ODC,
∴∠K=∠CDF,
∵=,
∴∠FAD=∠K,
∴∠FAD=∠CDF,
∵∠F=∠F,
∴△FAD∽△FDC,
∴=,
∵CF=1,AC=2,
∴FA=CF+AC=3,
∴=,
解得FD=,
在Rt△AFD中,tan∠FAD==,
∴∠FAD=30°,
∵AD平分∠CAB,
∴∠FAE=2∠FAD=60°,
∴AE===6,
∵AB=4,
∴BE=AE﹣AB=6﹣4=2,
答:BE的长为2.
23.(2022•广西)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E,延长BA交⊙O于点F.
(1)求证:DE是⊙O的切线;
(2)若=,AF=10,求⊙O的半径.
【解答】(1)证明:如图1,
连接OD,则OD=OC,
∴∠ODC=∠OCD,
∵AB=AC,
∴∠B=∠OCD,
∴∠B=∠ODC,
∴OD∥AB,
∵DE⊥AB,
∴OD⊥DE,
∵OD为⊙O的半径,
∴DE是⊙O的切线;
(2)解:如图2,连接AD,
∵=,
∴设AE=2m,DE=3m,
∵DE⊥AB,
∴∠AED=∠BED=90°,
在Rt△ADE中,根据勾股定理得,AD==m,
∵AC为直径,
∴∠ADB=∠ADC=90°=∠AED,
∴∠A=∠A,
∴△ABD∽△ADE,
∴=,
∴,
∴AB=m,BD=m,
∵AB=AC,∠ADC=90°,
∴DC=m,BC=2BD=3m,
连接CF,则∠ADB=∠F,
∵∠B=∠B,
∴△ADB∽△CFB,
∴,
∵AF=10,
∴BF=AB+AF=m+10,
∴,
∴m=4,
∴AD=4,CD=6,
在Rt△ADC中,根据勾股定理得,AC==26,
∴⊙O的半径为AC=13.
中考数学压轴真题汇编(全国通用)专题04反比例函数综合的压轴真题训练(原卷版+解析): 这是一份中考数学压轴真题汇编(全国通用)专题04反比例函数综合的压轴真题训练(原卷版+解析),共19页。试卷主要包含了的图象上,BE⊥x轴于点E等内容,欢迎下载使用。
中考数学压轴真题汇编(全国通用)专题04二次函数中角度问题压轴真题训练(原卷版+解析): 这是一份中考数学压轴真题汇编(全国通用)专题04二次函数中角度问题压轴真题训练(原卷版+解析),共34页。试卷主要包含了的顶点P在抛物线F,,与y轴交于点C,顶点为D,,交y轴于点C,综合与探究等内容,欢迎下载使用。
中考数学压轴真题汇编(全国通用)专题03函数图像的压轴真题训练(原卷版+解析): 这是一份中考数学压轴真题汇编(全国通用)专题03函数图像的压轴真题训练(原卷版+解析),共40页。