所属成套资源:高一数学同步备好课之题型全归纳(人教A版必修第一册)(原卷版+解析)
高一数学同步备好课之题型全归纳(人教A版必修第一册)专题41函数模型的应用(原卷版+解析)
展开
这是一份高一数学同步备好课之题型全归纳(人教A版必修第一册)专题41函数模型的应用(原卷版+解析),共35页。试卷主要包含了常用函数模型,函数模型应用的两个方面,用函数模型解决实际问题的步骤,数据拟合,据调查等内容,欢迎下载使用。
2.函数模型应用的两个方面
(1)利用已知函数模型解决问题.
(2)建立恰当的函数模型,并利用所得函数模型解释有关现象,对某些发展趋势进行预测.
3.用函数模型解决实际问题的步骤
(1)审题:弄清题意,分清条件和结论,理顺数量关系,用函数刻画实际问题,初步选择模型.
(2)建模:将文字语言转化为数学语言,利用数学知识,建立相应的函数模型.
(3)求模:求解函数模型,得到数学结论.
(4)还原:利用数学知识和方法得出的结论还原到实际问题中.
可将这些步骤用框图表示如下:
4.数据拟合
(1)定义:通过一些数据寻求事物规律,往往是通过绘出这些数据在直角坐标系中的点,观察这些点的整体特征,看它们接近我们熟悉的哪一种函数图象,选定函数形式后,将一些数据代入这个函数的一般表达式,求出具体的函数表达式,再做必要的检验,基本符合实际,就可以确定这个函数基本反映了事物规律,这种方法称为数据拟合.
(2)数据拟合的步骤
①以所给数据作为点的坐标,在平面直角坐标系中绘出各点;
②依据点的整体特征,猜测这些点所满足的函数形式,设其一般形式;
③取特殊数据代入,求出函数的具体解析式;
④做必要的检验.
题型一 函数模型的选择问题
1.如表是函数值y随自变量x变化的一组数据,由此判断它最可能的函数模型是( )
A.一次函数模型 B.二次函数模型
C.指数函数模型 D.对数函数模型
2.有一组实验数据如下表所示:
则能体现这些数据关系的函数模型是( )
A.u=lg2t B.u=2t-2 C.u=eq \f(t2-1,2) D.u=2t-2
3.下列函数关系中,可以看作是指数型函数y=kax(k∈R,a>0且a≠1)的模型的是( )
A.竖直向上发射的信号弹,从发射开始到信号弹到达最高点,信号弹的高度与时间的关系(不计空气阻力)
B.我国人口年自然增长率为1%时,我国人口总数与年份的关系
C.如果某人t s内骑车行进了1 km,那么此人骑车的平均速度v与时间t的函数关系
D.信件的邮资与其重量间的函数关系
4.如图所示,点P在边长为1的正方形的边上运动,M是CD的中点.当点P沿路线A-B-C-M运动时,点P经过的路程x与△APM的面积y之间的函数y=f(x)的图象大致是( )
5.某学校为了实现60万元的生源利润目标,准备制定一个激励招生人员的奖励方案:在生源利润达到5万元时,按生源利润进行奖励,且奖金y(单位:万元)随生源利润x(单位:万元)的增加而增加,但奖金总数不超过3万元,同时奖金不超过利润的20%.现有三个奖励模型:y=0.2x,y=lg5x,y=1.02x,其中哪个模型符合该校的要求?
6.据调查:人类在能源利用与森林砍伐中使CO2浓度增加.据测,2015年、2016年、2017年大气中的CO2浓度分别比2014年增加了1个单位,3个单位,6个单位.若用一个函数模型每年CO2浓度增加的单位数y与年份增加数x的关系,模拟函数可选用二次函数f(x)=px2+qx+r(其中p,q,r为常数)或函数g(x)=a·bx+c(其中a,b,c为常数),又知2018年大气中的CO2浓度比2014年增加了16.5个单位,请问用以上哪个函数作模拟函数较好?
7.某投资公司拟投资开发某种新产品,市场评估能获得10万元~1000万元(包含10万元和1000万元)的投资收益.现公司准备制订一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不低于1万元,同时不超过投资收益的20%.
(1)设奖励方案的函数模型为f(x),根据题目要求,写出f(x)满足的条件;
(2)下面是公司预设的两个奖励方案的函数模型:
①f(x)=eq \f(x,150)+2;②f(x)=4lg x-2.
试分别分析这两个函数模型是否符合公司的要求.
题型二 利用已知函数模型解决实际问题
1.某地为了抑制一种有害昆虫的繁殖,引入了一种以该昆虫为食物的特殊动物,已知该动物的繁殖数量y(只)与引入时间x(年)的关系为y=alg2(x+1),若该动物在引入一年后的数量为100只,则第7年它们发展到( )
A.300只 B.400只 C.600只 D.700只
2.某公司市场营销人员的个人月收入与其每月的销售量成一次函数关系,如图所示,由图中给出的信息可知,营销人员没有销售量时的收入是( )
A.310元 B.300元 C.390元 D.280元
3.某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的利润y与营运年数x(x∈N)为二次函数关系(如图),则客车有营运利润的时间不超过________年.
4.某种型号的汽车紧急刹车后滑行的距离y(km)与刹车时的速度x(km/h)的关系可以用y=ax2来描述,已知这种型号的汽车在速度为60 km/h时,紧急刹车后滑行的距离为b km.若一辆这种型号的汽车紧急刹车后滑行的距离为3b km,则这辆车的行驶速度为________km/h.
5.某公司在甲、乙两地销售同一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为________万元.
6.某公司招聘员工,面试人数按拟录用人数分段计算,计算公式为y=eq \b\lc\{\rc\ (\a\vs4\al\c1(4x,1≤x≤10,x∈N,,2x+10,10<x<100,x∈N,,1.5x,x≥100,x∈N,))其中x代表拟录用人数,y代表面试人数,若面试人数为60,则该公司拟录用人数为( )
A.15 B.40 C.25D.130
7.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为
“可食用率”,在特定条件下,可食用率P与加工时间t(单位:分钟)满足函数关系P=at2+bt+c(a,b,c是常数),如图记录了三次实验数据,根据上述函数模型和实验数据,可得到最佳加工时间为( )
A.3.50分钟 B.3.75分钟 C.4.00分钟 D.4.25分钟
8.衣柜里的樟脑丸随着时间会挥发而体积变小,刚放进的新丸体积为a,经过t天后体积V与天数t的关系式为V=ae-kt,新丸经过50天后,体积变为eq \f(4,9)A.若一个新丸体积变为eq \f(8,27)a,则需经过________天.
9.把物体放在冷空气中冷却,如果物体原来的温度是T1(℃),空气的温度是T0(℃),经过t分钟后物体的温度T(℃)可由公式T=T0+(T1-T0)e-0.25t求得.把温度是90 ℃的物体,放在10 ℃的空气中冷却t分钟后,物体的温度是50 ℃,那么t的值约等于(参考数据:ln 3≈1.099,ln 2≈0.693)( )
A.1.78 B.2.77 C.2.89D.4.40
10.某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=ekx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是( )
A.16小时B.20小时
C.24小时D.21小时
11.某公司预投资100万元,有两种投资可供选择:
甲方案年利率10%,按单利计算,5年后收回本金和利息;
乙方案年利率9%,按每年复利一次计算,5年后收回本金和利息.
哪种投资更有利?这种投资比另一种投资5年可多得利息多少万元?(结果精确到0.01万元)
12.衣柜里的樟脑丸,随着时间会挥发而体积缩小,刚放进去的新丸体积为a,经过t天后体积V与天数t的关系式为:V=a·e-kt.已知新丸经过50天后,体积变为eq \f(4,9)a.若一个新丸体积变为eq \f(8,27)a,则需经过的天数为( )
A.125 B.100 C.75 D.50
13.我们处在一个有声世界里,不同场合,人们对声音的音量会有不同要求.音量大小的单位是分贝(dB),对于一个强度为I的声波,其音量的大小η可由如下公式计算:η=10·Igeq \f(I,I0)(其中I0是人耳能听到的声音的最低声波强度),设η1=70 dB的声音强度为I1,η2=60 dB的声音强度为I2,则I1是I2的( )
A.eq \f(7,6)倍 B.10倍 C.10eq \f(7,6)倍 D.lneq \f(7,6)倍
14.一种放射性元素,最初的质量为500 g,按每年10%衰减.
(1)求t年后,这种放射性元素质量ω的表达式;
(2)由求出的函数表达式,求这种放射性元素的半衰期(剩留量为原来的一半所需的时间叫做半衰期).(精确到0.1年,已知lg 2=0.3010,lg 3=0.4771)
15.医院通过撒某种药物对病房进行消毒.已知开始撒放这种药物时,浓度激增,中间有一段时间,药物的浓度保持在一个理想状态,随后药物浓度开始下降.若撒放药物后3小时内的浓度变化可用下面的函数表示,其中x表示时间(单位:小时),f(x)表示药物的浓度:f(x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(-x2+4x+400
相关试卷
这是一份高一数学同步备好课之题型全归纳(人教A版必修第一册)专题38不同函数增长的差异(原卷版+解析),共20页。试卷主要包含了三种函数模型的性质,几种函数模型的增长差异,2万公顷、0,322,206 7,593 3等内容,欢迎下载使用。
这是一份高一数学同步备好课之题型全归纳(人教A版必修第一册)专题37对数函数的性质及其应用(原卷版+解析),共30页。
这是一份高一数学同步备好课之题型全归纳(人教A版必修第一册)专题36对数函数的概念、图象及性质(原卷版+解析),共23页。试卷主要包含了对数函数的概念,对数函数的图象及性质,反函数,底数对函数图象的影响,函数图象的变换规律,下列函数是对数函数的有等内容,欢迎下载使用。