开学活动
搜索
    上传资料 赚现金

    人教版八年级数学下册重难题型全归纳及技巧提升专项精练专题20.1数据的分析重难点题型10个(原卷版+解析)

    人教版八年级数学下册重难题型全归纳及技巧提升专项精练专题20.1数据的分析重难点题型10个(原卷版+解析)第1页
    人教版八年级数学下册重难题型全归纳及技巧提升专项精练专题20.1数据的分析重难点题型10个(原卷版+解析)第2页
    人教版八年级数学下册重难题型全归纳及技巧提升专项精练专题20.1数据的分析重难点题型10个(原卷版+解析)第3页
    还剩53页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版八年级数学下册重难题型全归纳及技巧提升专项精练专题20.1数据的分析重难点题型10个(原卷版+解析)

    展开

    这是一份人教版八年级数学下册重难题型全归纳及技巧提升专项精练专题20.1数据的分析重难点题型10个(原卷版+解析),共56页。
    题型1 算术平均数及相关计算
    【解题技巧】1)算术平均数:一般地,有n个数x1,x2,…,xn,那么=。简称平均数。
    算术平均数反映了这一组数据的集中趋势,表示了这组数据的平均水平。
    注:当任一数据变化时,都会影响算术平均数。
    2)结论:若=;=。
    则: = 1 \* GB3 ①x1±y1,x2±y2,…,xn±yn的平均数为x±y; = 2 \* GB3 ②x1,y1,x2,y2…,xn,yn的平均数为x+y)。
    = 3 \* GB3 ③ax1+b,ax2+b,…,axn+b的平均数为ax+b。
    ∵ax1,ax2,…,axn的平均数为ax; ∴x1+b,x2+b,…,xn+b的平均数为x+b。
    1.(2022·浙江·永嘉县八年级期中)数据3,4,5,6,7的平均数是___________.
    2.(2022·湖南·长沙市八年级期末)一组数据2,1,4,x,6的平均值是4,则x的值为( )
    A.3B.5C.6D.7
    3.(2022·河南新乡·八年级期末),,…,的平均数为m,,,…,的平均数为n,则,,…,的平均数为( )
    A.B.C.D.
    4.(2022·辽宁葫芦岛·八年级期末)将一组数据的每一个数都减去30,所得新的一组数据的平均数是1,则原来那组数据的平均数为( )
    A.31B.30C.1D.29
    5.(2022·河北·邢台市八年级阶段练习)已知一组数据、、、、的平均数是5,则另一组新数组、、、、的平均数是_____.
    6.(2022·重庆九年级阶段练习)有5个正整数,,,,,某数学兴趣小组的同学对5个正整数作规律探索,找出同时满足以下3个条件的数.
    ①,,是三个连续偶数,②,是两个连续奇数(),③.
    该小组成员分别得到一个结论:
    甲:取,5个正整数不满足上述3个条件;
    乙:取,5个正整数满足上述3个条件;
    丙:当满足“是4的倍数”时,5个正整数满足上述3个条件;
    丁:5个正整数满足上述3个条件,则,,的平均数与,的平均数之和是10p(p为正整数);
    以上结论正确的个数有( )个
    A.1B.2C.3D.4
    题型2 加权平均数及相关计算
    【解题技巧】
    加权平均数:一般地,若n个数x1,x2,…,xn的权分别是ω1,ω2,…,ωn,则eq \f(x1ω1+x2ω2+…+xnωn,ω1+ω2+…+ωn)叫做这n个数的加权平均数.前面求算术平均数,是将每个数据认为同等重要,即每个数据的权重都是1。
    注意:计算平均数时注意分辨是算术平均数还是加权平均数,两者计算方法有差异,不能混淆.
    1.(2022·湖南·宁远八年级阶段练习)某次演讲比赛四名选手的成绩统计如下表(单位:分)
    将评委、观众按的比例进行打分,成绩最高的是( )
    A.小李B.小张C.小王D.小周
    2.(2022·陕西·商南八年级期末)西安秦始皇陵兵马俑博物馆拟招聘一名优秀讲解员,小婷的笔试、试讲、面试三轮测成绩分别为分、分、分,综合成绩中笔试占,试讲占,面试占,那么小婷的最后成绩为___________分.
    3.(2022·广东·陆河八年级阶段练习)某商场销售A,B,C,D四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是__________.
    4.(2022·山东·宁津县育新中学八年级阶段练习)自1996年起,我国确定每年3月份最后一周的星期一,为全国中小学生“安全教育日”.2018年3月26日是第二十三个全国中小学生安全教育日.某中学八年级开展了交通安全为主题的演讲比赛.其中两名参赛选手的各项得分如下表:
    如果规定:演讲内容、演讲技巧、仪表形象按6:3:1计算成绩,那么甲、乙两人的成绩谁更高?( )
    A.甲B.乙C.甲乙一样高D.无法确定
    5.(2022·浙江·余姚市兰江中学八年级期中)浙江某大学部分专业采用“三位一体”的形式进行招生,现有甲、乙两名学生,他们各自的三类成绩(已折算成满分100分)如表所示:
    (1)如果根据三项得分的平均数,那么哪位同学排名靠前?
    (2)“三位一体”根据入围考生志愿,按综合成绩从高分到低分择优录取,综合成绩按“学业水平测试成绩×20%+综合测试成绩×20%+高考成绩×60%”计算形成,那么哪位同学排名靠前?
    6.(2022·浙江金华·八年级期末)学校准备从甲乙两位选手中选择一位,代表学校参加所在地区的汉字听写大赛,总评成绩由“表达能力、阅读理解、综合素质和汉字听写”四部分组成.甲,乙两位选手的成绩如下表,请解答下列问题:
    (1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩.
    (2)已知四部分占总评成绩的比例如图所示.①求图中表示“阅读理解”的扇形的圆心角度数;
    ②通过计算甲,乙两名选手的总评成绩,你认为学校派谁参加比赛合适?
    题型3 众数与中位数的相关计算
    【解题技巧】
    1)中位数:将一组数据从小到大(或从大到小)排列,如果数据是奇数个,则处于中间的数为中位数;若数据是偶数个,则中间两个数据的平均数为中位数。注: = 1 \* GB3 ①所有数据需排列(从大到小或从小到大); = 2 \* GB3 ②中位数有可能不是这组数据中的数; = 3 \* GB3 ③中位数反映了中间水平。
    2)众数:一组数据中出现次数最多的数据.
    注: = 1 \* GB3 ①众数不一定唯一; = 2 \* GB3 ②众数反应了一组数据中的趋势量,即数据出现频次最高的量。
    1.(2022·山东·薛城区八年级阶段练习)我区某中学在预防“新冠肺炎”期间,要求学生每日测量体温,九(5)班一名同学连续一周体温情况如表所示:则该名同学这一周体温数据的众数和中位数分别是( )
    A.和36.2B.36.2和C.36.2和36.2D.36.2和
    2.(2022·江苏·无锡市九年级阶段练习)为了调查某小区居民的用水情况,随机抽查了若干户家庭的月用水量,结果如表,则关于这若干户家庭的用水量,下列说法错误的是( )
    A.众数是 B.平均数是 C.调查了户家庭的月用水量 D.中位数是
    3.(2022·浙江·宁波市鄞州区教育局教研室八年级期末)一组数据,,,,的中位数和平均数相等,则的值是________.
    4.(2022·陕西商洛·八年级期末)从小到大排列的一组数据1,2,2,,6,7的中位数为3,则m的值为______.
    5.(2022·山东滨州·八年级期末)从小到大的一组数据-2,1,2,,6,10的中位数为2,则这组数据的众数是___________.
    6.(2022·江苏·九年级专题练习)一组数据﹣1,3,1,2,b的唯一众数为﹣1,则这组数据的中位数为__.
    题型4 平均数、众数、中位数的综合运算
    1.(2022·黑龙江牡丹江·八年级期末)一组数据为1,3,2,2,a,b,c,唯一众数是3,平均数是2,则这组数据的中位数是_______.
    2.(2022·广东湛江·八年级期末)两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的众数为________.
    3.(2022·江苏·九年级专题练习)五个正整数,中位数是,众数是,则这五个正整数的平均数是______ .
    4.(2022·湖北黄石·八年级期末)一组2,2x,y,12中,唯一的众数是12,平均数是10,这数据的中位数是_______.
    5.(2022·福建·厦门八年级期末)已知一组数据由五个正整数组成,它的中位数和众数都是2,则这五个数的和的最小值是( )
    A.7B.8C.9D.10
    6.(2022·河北保定·九年级期末)某部门为了解工人的生产能力情况,进行了抽样调查,随机抽取了20名工人每天每人加工零件的个数,整理得到如下统计表和条形统计图.
    根据以上信息,解答下列问题:(1)分别求,的值;(2)为调动积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让60%左右的工人能获奖,应根据______来确定奖励标准比较合适(填“平均数”、“众数”或“中位数”);(3)该部门规定:每天加工零件的个数达到或超过21个的工人为生产能手,若该部门有300名工人,试估计该部门生产能手的人数.
    题型5 方差与标准差的相关计算
    【解题技巧】
    1)极差:一组数据中最大值与最小值的差
    2)方差: 在一组数据中,各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差。通常用“”表示,即
    3)标准差:方差的算数平方根叫做这组数据的标准差,用“s”表示,即
    结论:若数据a1,a2,……an的方差是s2,则数据a1+b,a2+b,……an+b的方差仍然是s2,数据ka1+b,ka2+b,……kan+b的方差是k2s2.
    1.(2022·安徽·合肥二模)某班抽取名同学参加体能测试,成绩如下:,,,,,下列表述错误的是( )
    A.平均数是B.极差是C.中位数是D.标准差是
    2.(2022·浙江·宁波市镇海蛟川书院八年级期中)一组数据的方差计算公式为,则这组数据的方差是______.
    3.(2022·福建·福州日升中学八年级期中)如果有一组数据-2,0,1,3,的极差是6,那么的值是_________.
    4.(2022·福建·厦门实验中学二模)设数据x1,x2,x3,…,xn的平均数为x,方差S2=0,则下列式子一定正确的是( )
    A.x=0B.x1+x2+x3+…+xn=0C.x1=x2=x3=…=xn=0D.x1=x2=x3=…=xn=x
    5.(2022·山东烟台·八年级期中)若一组数据13,14,15,16,x的方差比另一组数3,4,5,6,7的方差大,则x的值可能是( )
    A.12B.16C.17D.18
    6.(2022·江苏·盐城九年级阶段练习)省射击队要从甲、乙两名射击运动员中挑选一人参加全国比赛,在最近的4次选拔赛中,甲的射击的成绩如下(单位:环):7、8、9、8.
    (1)求甲运动员这4次选拔赛成绩的平均数;(2)求甲运动员这4次选拔赛成绩的方差.
    题型6 统计量的选择--众数
    1.(2022·河北秦皇岛·八年级期末)某幼儿园对全体小朋友爱吃哪种粽子做调查,以决定最终买哪种口味的粽子,下面的调查数据最值得关注的是( )
    A.平均数B.中位数C.众数D.方差
    2.(2022·浙江衢州·八年级期末)一家鞋店对上周某一品牌的销售情况统计如下表:
    该店决定本周进鞋时多进些尺码为23.5厘米的鞋,影响鞋店决策的统计量是( ).
    A.平均数B.中位数C.众数D.方差
    3.(2022·浙江杭州·八年级阶段练习)“冰墩墩”热潮持续不断,店家为合理进行资金分配,对上月各类型的爆款数量进行数据统计分析,从而确定各款商品批发数量,此时店家应重点参考( )
    A.众数B.平均数C.中位数D.方差
    4.(2022·安徽合肥·八年级期末)某品牌运动鞋专卖店在销售过程中,对近期不同尺码的鞋子销售情况进行了统计,若决定下次进货时,增加一些41码的鞋子,影响该决策的统计量是( ).
    A.平均数B.中位数C.众数D.方差
    5.(2022·河北廊坊·八年级期末)某服装店试销一款女式防晒服,试销期间对不同颜色的防晒服的销售情况做了统计.如果服装店经理最关心的是哪种颜色的防晒服最畅销,那么对经理最有意义的统计量是( )
    A.平均数B.众数C.中位数D.方差
    6.(2022·浙江·八年级期中)一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的鞋销售量如下表:
    如果你是鞋店的经理,你会最关注哪个统计量( )
    A.平均数B.中位数C.众数D.方差
    题型7 统计量的选择--中位数
    1.(2022·河北·石家庄九年级阶段练习)在一次15人参加的歌唱比赛中,预赛成绩各不同要取前8名参加决赛杨超越已经知道自己的成绩,她想知道自己是否能进入决赛,只需要再知道这15名选手成绩的( )
    A.平均数B.众数C.方差D.中位数
    2.(2022·河南洛阳·八年级期末)在一次数学测试中,小明的成绩是75分,超过本班半数同学的成绩,分析得出这个结论所用的统计量是( )
    A.平均数B.众数C.中位数D.方差
    3.(2022·福建·莆田八中八年级期末)为了方便市民出行,打造健康莆田,莆田市政府推出“Yu Bike微笑自行车”的社会公共服务项目.微笑自行车运营管理公司经过调查获得关于微笑自行车租用骑行时间的数据,并由此制定了收费标准:若每次租用单车骑行a小时以内,则不收取费用;若超过a小时后,超过部分每小时收费1元.为保证不少于50%的骑行是免费的,自行车运营管理公司应从此次调查得到的骑行时间的数据中,选取下列哪个统计了作为a的值( )
    A.平均数B.众数C.中位数D.方差
    4.(2022·吉林长春·八年级期末)某校11名学生演讲赛的成绩各不相同,若某选手想知道自己能否进入前5名,则他不仅要知道自己的成绩,还应知道这11名学生成绩的( )
    A.平均数B.众数C.方差D.中位数
    4.(2022·河南驻马店·八年级期末)杨靖宇将军纪念馆“红色小讲解员”演讲比赛中,7位评委分别给出某位选手的原始评分.评定该选手成绩时,从7个原始评分中去掉一个最高分、一个最低分,得到5个有效评分,5个有效评分与7个原始评分相比.这两组数据一定不变的是( )
    A.中位数B.众数C.平均数D.以上都不对
    5.(2022·贵州黔东南·八年级期末)某装配车间为了较合理地确定每名工人标准目产量,车间管理者从过去的工作日中随机地抽查了该车间15名工人在某一天中各自装配机器的数量(单位:台),具体如下:6,7,7,8,8,8,8,9,10,10,11,13,15,15,16.根据抽样的数据,车间管理者将每名工人标准日产量定为9台,其依据是统计数据中的( )
    A.最大数据B.众数C.中位数D.平均数
    6.(2022·河南洛阳·九年级)某停车场规定,停车时间在小时以内收费元,超过小时的,每小时另收元,若要让在该停车场停车的的人只花元钱,应取( )
    A.平均数B.众数C.中位数D.方差
    题型8 统计量的选择--方差
    【解题技巧】
    极差反映了一组数据中极端值的变化。当极差越小,则数据越稳定;极差越大,则数据极端数值波动越大。
    方差(标准差)反映整体数据波动情况;方差(标准差)越小,整体数据越稳定。
    1.(2022·浙江·永嘉县八年级期中)如表记录了甲、乙、丙、丁四名学生近10次英语词汇成绩的数据信息,要选择一名成绩好又发挥稳定的学生参加年级英语词汇比赛,应该选择的是( )
    A.甲B.乙C.丙D.丁
    2.(2022·福建·福州九年级阶段练习)八年级一班的平均年龄是12.5岁,方差是40,过一年后该班学生到九年级时,下列说法正确的是( )
    A.平均年龄不变B.年龄的方差不变C.年龄的众数不变D.年龄的中位数不变
    3.(2021·浙江湖州市·九年级一模)已知某运动队的甲、乙、丙、丁四名射击运动员平时训练的平均成绩(单位:环)以及方差(单位:环)如下表,现要选一名成绩优秀且稳定的队员参加某项比赛,则应选( )
    A.甲B.乙C.丙D.丁
    4.(2021·浙江宁波市·九年级二模)一组数据1,2,3,4,5的方差是a,若增加一个数据9,则增加后6个数据的方差为b,则a与b的大小关系是( )
    A.a < bB.a = bC.a > bD.不能确定
    5.(2022·重庆铜梁·八年级期末)在平均数、中位数、众数、方差等几个统计量中,最能刻画数据波动(离散)程度的量是______.
    6.(2022·北京·首都师范大学附属中学九年级阶段练习)电影公司随机收集了2000部电影的有关数据,经分类整理得到下表:
    好评率是指一类电影中获得好评的部数与该类电影的部数的比值.
    电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么第____类电影的好评率增加0.1,第____类电影的好评率减少0.1,可以使获得好评的电影总部数与样本中的电影总部数的比值达到最大.
    题型9平均数、中位数、众数、方差相关判断
    【解题技巧】平均数的优点:平均数的计算过程中用到了一组数据中的每一个数,因此比中位数和众数更灵敏,反映了更多数据的信息.
    平均数的缺点:计算较麻烦,而且容易受到极端值的影响.
    中位数的优点:计算简单,不容易受到极端值的影响,确定了中位数之后,可以知道小于中位数的数值和大于中位数的数值在这组数据中各占一半.
    中位数的缺点:除了中间的值以外,不能反映其他数据的信息.
    众数的优点:众数很容易从直方图中获得,它可以清楚地告诉我们:在一组数据中哪个或哪些数值出现的次数最多.
    众数的缺点:不能反映众数比其他数出现的次数多多少,而且也丢失了很多其他数据的信息.
    1.(2022·山东·八年级单元测试)某校八年级甲、乙两班举行电脑汉字输入比赛,两个班参加比赛的学生每分钟输入汉字的个数经统计和计算后结果如下表:
    有一位同学根据上面表格得出如下结论:①甲、乙两班学生的平均水平相同;
    ②乙班优秀人数比甲班优秀人数多(每分钟输入汉字达150个以上为优秀);
    ③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.上述结论正确的是___________(填序号).
    2.(2022·成都市·八年级课时练习)某次跳绳比赛中,统计甲、乙两班学生每分钟跳绳的成绩(单位:次)情况如下表:
    下列三个命题:(1)甲班平均成绩低于乙班平均成绩;(2)甲班成绩的波动比乙班成绩的波动大;
    (3)甲班成绩优秀人数少于乙班成绩优秀人数.(跳绳次数次为优秀)
    其中正确的命题是___________.(只填序号)
    3.(2022·黑龙江·五常市八年级期末)某次体育活动中,统计甲、乙两班学生每分钟跳绳的成绩(单位:次)情况如下:
    请你从下面三个结论中,选出所有正确的命题
    ①甲班学生的平均成绩高于乙班学生的平均成绩;②甲班学生的成绩波动比乙班学生的成绩波动大;
    ③甲班学生的成绩优秀人数不会多于乙班学生的成绩优秀人数(跳绳次数≥150次为优秀)
    以上三个结论中正确的是_______(把所有正确的结论的序号填在横线上)
    4.(2022·北京·九年级专题练习)某景区为了解游客人数的变化规律,提高旅游服务质量,收集并整理了某月天)接待游客人数(单位:万人)的数据,绘制了下面的统计图和统计表.
    根据以上信息,以下四个判断中,正确的是____(填写所有正确结论的序号).
    ①该景区这个月游玩环境评价为“拥挤或严重拥挤”的天数仅有4天;②该景区这个月每日接待游客人数的中位数在万人之间;③该景区这个月平均每日接待游客人数低于5万人;④这个月1日至5日的五天中,如果某人曾经随机选择其中的两天到该景区游玩,那么他“这两天游玩环境评价均为好”的可能性为.
    5.(2022·江苏·苏州二模)牛年伊始,中国电影行业迎来了开门红.春节档期全国总观影人次超过1.6亿,总票房超过80亿元.以下是甲、乙两部春节档影片上映后的票房信息.
    a.两部影片上映第一周单日票房统计图.
    b.两部影片分时段累计票房如下
    (以上数据来源于中国电影数据信息网).
    根据以上信息,回答下列问题:(1)2月12日-18日的一周时间内,影片乙单日票房的中位数为__________;
    (2)对于甲、乙两部影片上映第一周的单日票房,下列说法中所有正确结论的序号是__________;
    ①甲的单日票房逐日增加;②甲单日票房的方差小于乙单日票房的方差;
    ③在第一周的单日票房统计中,甲超过乙的差值于2月17日达到最大.
    (3)截止到2月21日,影片甲上映后的总票房超过了影片乙,据此估计,2月19日-21日三天内影片甲的累计票房应超过_________亿元.
    6.(2022·北京·九年级专题练习)某公司销售一批新上市的产品,公司收集了这个产品15天的日销售额的数据,制作了如下的统计图.
    关于这个产品销售情况有以下说法:
    ①第1天到第5天的日销售额的平均值低于第6天到第10天的日销售额的平均值;
    ②第6天到第10天日销售额的方差小于第11天到第15天日销售额的方差;
    ③这15天日销售额的平均值一定超过2万元.所有正确结论的序号是________.
    题型10 统计综合题
    1.(2022·重庆南开中学八年级期末)2022年,教育部制定了独立的《义务教育劳动课程标准》,其中规定:以劳动项目为载体,以孩子经历体验劳动过程为基本要求,培养学生的核心劳动素养.某校分别从该校七、八年级学生中各随机调查了100名学生,统计他们上周的劳动时间,劳动时间记为x分钟,将所得数据分为5个组别(A组:;B组:;C组:;D组:;E组:),将数据进行分析,得到如下统计:
    ①八年级B组学生上周劳动时间从高到低排列,排在最后的10个数据分别是:82,82,81,81,81,81,80,80,80,80.
    ②八年级100名学生上周劳动时间频数分布统计表:
    ③七、八年级各100名学生上周劳动时间的平均数、中位数、众数如下表:
    ④七年级100名学生上周劳动时间分布扇形统计图
    请你根据以上信息,回答下列问题:(1)______,______,______;
    (2)根据以上数据分析,你认为七、八年级哪个年级学生上周劳动情况更好,请说明理由;(写出一条即可)
    (3)已知七年级有800名学生,八年级有600名学生,请估计两个年级上周劳动时间在80分钟以上(含80分钟)的学生一共有多少人?
    2.(2022·福建泉州·八年级期末)2022年春季,安溪县初中数学学科教学联盟组编写“县本小单元分层作业”测试卷,现将某试点校八年级甲、乙两位选做“强基”层次的同学的10次测试成绩,绘制如图统计图.
    (1)根据图中提供的数据列出如表统计表:
    则a= ,b= .
    (2)现在要从这两位同学中选派一位参加数学素养竞赛,根据以上信息你认为应该选派谁?请简要说明理由.
    3.(2021·广西来宾·中考真题)某水果公司以元/的成本价新进箱荔枝,每箱质量,在出售荔枝前,需要去掉损坏的荔枝,现随机抽取箱,去掉损坏荔枝后称得每箱的质量(单位:)如下:


    (1)直接写出上述表格中,,的值;
    (2)平均数、众数、中位数都能反映这组数据的集中趋势,请根据以上样本数据分析的结果,任意选择其中一个统计量,估算这箱荔枝共损坏了多少千克?
    (3)根据(2)中的结果,求该公司销售这批荔枝每千克定为多少元才不亏本?(结果保留一位小数)
    4.(2022·北京市九年级开学考试)为进一步增强中小学生“知危险会避险”的意识,某校初三年级开展了系列交通安全知识竞赛,从中随机抽取30名学生两次知识竞赛的成绩(百分制),并对数据(成绩)进行收集、整理、描述和分析.下面给出了部分信息.
    a.这30名学生第一次竞赛成绩和第二次竞赛成绩得分情况统计图:
    b.下表是这30名学生两次知识竞赛的获奖情况相关统计:
    (规定:分数90,获卓越奖;85分数

    英语朗读宝
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map