- 【备战2025年高考】 高中物理一轮复习 机械能专题 第6章 第2讲 动能定理及其应用导学案(教师版+学生版) 试卷 1 次下载
- 【备战2025年高考】 高中物理一轮复习 机械能专题 第6章 第3讲 机械能守恒定律及其应用导学案(教师版+学生版) 试卷 1 次下载
- 【备战2025年高考】 高中物理一轮复习 机械能专题 第6章 第4讲 功能关系 能量守恒定律导学案(教师版+学生版) 试卷 1 次下载
- 【备战2025年高考】 高中物理一轮复习 机械能专题 第6章 实验7 验证机械能守恒定律(教师版+学生版) 试卷 0 次下载
- 【备战2025年高考】 高中物理一轮复习 机械能专题 第6章 专题强化8 动能定理在多过程问题中的应用(教师版+学生版) 试卷 2 次下载
【备战2025年高考】 高中物理一轮复习 机械能专题 第6章 专题强化9 动力学和能量观点的综合应用(教师版+学生版)
展开1.会用功能关系解决传送带、滑块—木板模型综合问题.
2.会利用动力学和能量观点分析多运动组合问题.
题型一 传送带模型
提升·关键能力
例1 (多选)如图所示为某建筑工地所用的水平放置的运输带,在电动机的带动下运输带始终以恒定的速度v0=1 m/s顺时针传动.建筑工人将质量m=20 kg的建筑材料静止地放到运输带的最左端,同时建筑工人以v0=1 m/s的速度向右匀速运动.已知建筑材料与运输带之间的动摩擦因数为μ=0.1,运输带的长度为L=2 m,重力加速度大小为g=10 m/s2.以下说法正确的是( )
A.建筑工人比建筑材料早0.5 s到右端
B.建筑材料在运输带上一直做匀加速直线运动
C.因运输建筑材料电动机多消耗的能量为10 J
D.运输带对建筑材料做的功为10 J
例2 如图所示,绷紧的传送带与水平面的夹角θ=30°,传送带在电动机的带动下,始终保持v0=2 m/s的速率运行,现把一质量为m=10 kg的工件(可视为质点)轻轻放在传送带的底端,经过时间t=1.9 s,工件被传送到h=1.5 m的高处,g取10 m/s2,求:
(1)工件与传送带间的动摩擦因数;
(2)电动机由于传送工件多消耗的电能.
1.传送带问题的分析方法
(1)动力学角度:首先要正确分析物体的运动过程,做好受力分析,然后利用运动学公式结合牛顿第二定律求物体及传送带在相应时间内的位移,找出物体和传送带之间的位移关系.
(2)能量角度:求传送带对物体所做的功、物体和传送带由于相对滑动而产生的热量、因放上物体而使电动机多消耗的电能等,常依据功能关系或能量守恒定律求解.
2.功能关系分析
(1)传送带克服摩擦力做的功:W=Ffx传.
(2)系统产生的内能:Q=Ffs相对,s相对表示相对路程.
(3)功能关系分析:W=ΔEk+ΔEp+Q.
题型二 滑块—木板模型
提升·关键能力
例3 如图甲所示,长木板A放在光滑的水平面上,质量为m=2 kg的另一物体B(可看成质点)以水平速度v0=2 m/s滑上原来静止的长木板A的上表面.由于A、B间存在摩擦力,之后A、B速度随时间变化情况如图乙所示.下列说法正确的是(g取10 m/s2)( )
A.木板A最终获得的动能为2 J
B.系统损失的机械能为4 J
C.木板A的最小长度为2 m
D.A、B间的动摩擦因数为0.1
例4 (2023·黑龙江省佳木斯一中高三检测)如图所示,在光滑的水平面上放置一个足够长的木板B,在B的左端放有一个可视为质点的小滑块A,A、B间的动摩擦因数μ=0.4,A的质量m=1 kg,B的质量M=2 kg, g=10 m/s2.现对A施加F=7 N的水平向右的拉力,1 s后撤去拉力F,求:(结果可以用分数表示)
(1)撤去拉力F前小滑块A和长木板B的加速度大小a1、a2;
(2)A相对于B静止时的速度大小v;
(3)整个过程中由于摩擦生成的热量Q.
1.动力学分析:分别对滑块和木板进行受力分析,根据牛顿第二定律求出各自的加速度;从放上滑块到二者速度相等,所用时间相等,由t=eq \f(Δv2,a2)=eq \f(Δv1,a1),可求出共同速度v和所用时间t,然后由位移公式可分别求出二者的位移.
2.功和能分析:对滑块和木板分别运用动能定理,或者对系统运用能量守恒定律.如图所示,要注意区分三个位移:
(1)求摩擦力对滑块做功时用滑块对地的位移x滑;
(2)求摩擦力对木板做功时用木板对地的位移x板;
(3)求摩擦生热时用相对位移Δx.
题型三 多运动组合问题
提升·关键能力
例5 (2023·浙江舟山市模拟)某游乐场的游乐装置可简化为如图所示的竖直面内轨道BCDE,左侧为半径R=0.8 m的光滑圆弧轨道BC,轨道的上端点B和圆心O的连线与水平方向的夹角α=30°,圆弧轨道与粗糙水平轨道CD相切于点C,DE为倾角θ=30°的光滑倾斜轨道,一轻质弹簧上端固定在E点处的挡板上.现有质量为m=1 kg的小滑块P(可视为质点)从空中的A点以v0=eq \r(2) m/s的初速度水平向左抛出,恰好从B点沿轨道切线方向进入轨道,沿着圆弧轨道运动到C点之后继续沿水平轨道CD滑动,经过D点(不计经过D点时的能量损失)后沿倾斜轨道向上运动至F点(图中未标出),弹簧恰好压缩至最短.已知C、D之间和D、F之间距离都为1 m,滑块与轨道CD间的动摩擦因数为μ=0.5,重力加速度g=10 m/s2,不计空气阻力.求:
(1)小滑块P经过圆弧轨道上B点的速度大小;
(2)小滑块P到达圆弧轨道上的C点时对轨道压力的大小;
(3)弹簧的弹性势能的最大值;
(4)试判断滑块返回时能否从B点离开,若能,求出飞出B点的速度大小;若不能,判断滑块最后位于何处.
例6 如图所示,AB、FG均为半径R=0.45 m的四分之一光滑圆弧轨道,半径O1B、O2F均竖直,C点在B点的正下方,C、D两点在同一高度上,DE为倾角θ=53°、长度L1=2 m的粗糙斜轨道,EF为粗糙水平直轨道.一物块(视为质点)从A点由静止滑下,从B点水平飞出后恰好落到D点,并且物块落到D点时的速度方向与DE轨道平行,物块经过EF轨道后恰好能到达G点.物块与DE、EF两轨道间的动摩擦因数均为μ=eq \f(1,3),取重力加速度大小g=10 m/s2,不计物块经过E点的能量损失,不计空气阻力.求:(sin 53°=0.8,结果可保留分数)
(1)C、D两点间的距离x;
(2)物块从B点运动到E点的时间t;
(3)EF轨道的长度L2以及物块最后停止的位置到F点的距离s.
1.分析思路
(1)受力与运动分析:根据物体的运动过程分析物体的受力情况,以及不同运动过程中力的变化情况;
(2)做功分析:根据各种力做功的不同特点,分析各种力在不同运动过程中的做功情况;
(3)功能关系分析:运用动能定理、机械能守恒定律或能量守恒定律进行分析,选择合适的规律求解.
2.方法技巧
(1)“合”——整体上把握全过程,构建大致的运动情景;
(2)“分”——将全过程进行分解,分析每个子过程对应的基本规律;
(3)“合”——找出各子过程之间的联系,以衔接点为突破口,寻求解题最优方案.
练习·固本增分
1、(多选)(2023·新疆三模)如图甲所示,倾角为θ的传送带以恒定的速率v沿逆时针方向运行。t=0时刻,质量m=2 kg的小物块以初速度v0从A端滑上传送带,小物块的速度随时间变化的图像如图乙所示,1.25 s时小物块从B端滑离传送带。沿传送带向下为正方向,重力加速度g取10 m/s2,则( )
A.传送带的倾角θ=37°
B.小物块对传送带做功18 J
C.小物块在传送带上留下的痕迹长度为1 m
D.小物块与传送带间因摩擦而产生的热量为4.5 J
2、(2024·山东日照市联考)如图所示,水平传送带以v=6 m/s的速度逆时针匀速转动,传送带左端与倾角θ=37°的斜面PM在M点平滑相接,右端与半径R=4.05 m的光滑四分之一圆弧轨道在N点平滑相接(接点处均不影响传送带的转动)。质量m=0.5 kg的小物块从圆弧轨道最高点由静止下滑后从N点滑上传送带,经过M点后滑上斜面。已知小物块与传送带及斜面间的动摩擦因数μ均为0.15,MN间的距离L=21 m,g=10 m/s2,sin 37°=0.6,cs 37°=0.8。斜面PM足够长,不计小物块经过M、N两点处的机械能损失。求:
(1)小物块第一次通过传送带所用的时间t;
(2)小物块第一次沿斜面上升的最大高度H;
(3)小物块在斜面上因摩擦产生的总热量Q。
3、(2023·湖南省名校联盟联考)某商家为了吸引顾客,设计了抽奖活动,如图所示,三块尺寸相同的薄木板A、B、C随机排序并紧挨着置于足够大的水平地面上,质量均为m=1 kg,长度均为L=3 m。三块木板的下表面与地面间的动摩擦因数均为μ=0.1,上表面(均水平)各有不同的涂层,质量M=2.5 kg的滑块(视为质点)与A、B、C上表面间的动摩擦因数分别为μ、2μ、3μ。顾客以某一水平初速度从左侧第一块木板的左端将滑块水平向右推出。从左向右数,若滑块最终停在第一、二、三块木板上,则顾客分别获得三、二、一等奖;若滑块滑离所有木板,则顾客不获奖。认为最大静摩擦力与滑动摩擦力大小相等,取重力加速度大小g=10 m/s2。
(1)若木板全部固定,要想获奖,求滑块的初速度大小v0应满足的条件;
(2)若木板不固定,且从左向右按照A、B、C的方式放置,要想获得一等奖,求滑块初速度的最小值v0min(结果可保留根号)。
课时精练
1.如图所示,足够长的水平传送带以恒定速率v顺时针运动,某时刻一个质量为m的小物块,以大小也是v、方向与传送带的运动方向相反的初速度冲上传送带,最后小物块的速度与传送带的速度相同.在小物块与传送带间有相对运动的过程中,滑动摩擦力对小物块做的功为W,小物块与传送带间因摩擦产生的热量为Q,则下列判断中正确的是( )
A.W=0,Q=mv2 B.W=0,Q=2mv2
C.W=eq \f(mv2,2),Q=mv2 D.W=mv2,Q=2mv2
2.(多选)如图所示,质量m=1 kg的物体(可视为质点)从高为h=0.2 m的光滑轨道上P点由静止开始下滑,滑到水平传送带上的A点,轨道与传送带在A点平滑连接,物体和传送带之间的动摩擦因数为μ=0.2,传送带A、B两点之间的距离为L=5 m,传送带一直以v=4 m/s的速度顺时针运动,则(g取10 m/s2)( )
A.物体从A运动到B的时间是1.5 s
B.物体从A运动到B的过程中,摩擦力对物体做功为2 J
C.物体从A运动到B的过程中,产生的热量为2 J
D.物体从A运动到B的过程中,带动传送带转动的电动机多做的功为10 J
3.如图所示,一足够长的木板在光滑的水平面上以速度v向右匀速运动,现将质量为m的物体轻轻地放置在木板上的右端,已知物体与木板之间的动摩擦因数为μ,为保持木板的速度不变,从物体放到木板上到物体相对木板静止的过程中,须对木板施一水平向右的作用力F,则力F对木板所做的功为( )
A.eq \f(mv2,4) B.eq \f(mv2,2)
C.mv2 D.2mv2
4.(2024·云南省名校联考)如图所示,斜面AB的末端与一水平放置的传送带左端平滑连接,当传送带静止时,有一滑块从斜面上的P点静止释放,滑块能从传送带的右端滑离传送带。若传送带以某一速度逆时针转动,滑块再次从P点静止释放,则下列说法正确的是( )
A.滑块可能再次滑上斜面
B.滑块在传送带上运动的时间增长
C.滑块与传送带间因摩擦产生的热量增多
D.滑块在传送带上运动过程中,速度变化得更快
5.(多选)如图甲所示,一长木板静止在水平地面上,在t=0时刻,一小物块以一定速度从左端滑上长木板,之后长木板运动的v-t图像如图乙所示,已知小物块与长木板的质量均为m=1 kg,已知木板足够长,g取10 m/s2,则( )
A.小物块与长木板间的动摩擦因数μ=0.5
B.在整个运动过程中,物块与木板构成的系统所产生的热量70 J
C.小物块的初速度为v0=12 m/s
D.0~2 s与2~3 s物块和木板构成的系统机械能减少量之比为17∶1
6.(多选)如图甲,一足够长的传送带与水平面的夹角θ=30°,传送带在电动机的带动下,速率始终不变.t=0时刻在传送带适当位置上放一具有一定初速度的小物块.取沿传送带向上为正方向,物块在传送带上运动的速度随时间的变化如图乙所示.已知小物块质量m=1 kg,g取10 m/s2,下列说法正确的是( )
A.传送带顺时针转动,速度大小为2 m/s
B.传送带与小物块之间的动摩擦因数μ=eq \f(2\r(3),5)
C.0~t2时间内因摩擦产生的热量为27 J
D.0~t2时间内电动机多消耗的电能为28.5 J
7.如图所示,一质量为m1=1 kg的长直木板放在粗糙的水平地面上,木板与地面之间的动摩擦因数μ1=0.1,木板最右端放有一质量为m2=1 kg、大小可忽略不计的物块,物块与木板间的动摩擦因数μ2=0.2。现给木板左端施加一大小为F=12 N、方向水平向右的推力,经时间t1=0.5 s后撤去推力F,再经过一段时间,木板和物块均停止运动,整个过程中物块始终未脱离木板,取g=10 m/s2,求:
(1)撤去推力F瞬间,木板的速度大小v1及物块的速度大小v2;
(2)木板至少多长;
(3)整个过程中因摩擦产生的热量。
8.如图所示,光滑水平面上有一木板,质量M=1.0 kg,长度L=1.0 m.在木板的最左端有一个小铁块(可视为质点),质量m=1.0 kg.小铁块和木板之间的动摩擦因数μ=0.30.开始时它们都处于静止状态,某时刻起对木板施加一个水平向左的拉力F将木板抽出,若F=8 N,g取10 m/s2.求:
(1)抽出木板的过程中摩擦力分别对木板和铁块做的功;
(2)抽出木板的过程中由于摩擦产生的内能Q.
9.(2023·安徽省六安中学高三检测)如图所示,水平轨道AB长为2R,其A端有一被锁定的轻质弹簧,弹簧左端连接在固定的挡板上.圆心在O1、半径为R的光滑圆弧轨道BC与AB相切于B点,并且和圆心在O2、半径为2R的光滑细圆管轨道CD平滑对接,O1、C、O2三点在同一条直线上.光滑细圆管轨道CD右侧有一半径为2R,圆心在D点的eq \f(1,4)圆弧挡板MO2竖直放置,并且与地面相切于O2点.质量为m的小滑块(可视为质点)从轨道上的C点由静止滑下,刚好能运动到A点,触发弹簧,弹簧立即解除锁定,小滑块被弹回,小滑块在到达B点之前已经脱离弹簧,并恰好无挤压通过细圆管轨道最高点D(计算时圆管直径可不计,重力加速度为g).求:
(1)小滑块与水平轨道AB间的动摩擦因数μ;
(2)弹簧锁定时具有的弹性势能Ep;
(3)小滑块通过最高点D后落到挡板上时具有的动能Ek.
10.“高台滑雪”一直受到一些极限运动爱好者的青睐.挑战者以某一速度从某曲面飞出,在空中表演各种花式动作,飞跃障碍物(壕沟)后,成功在对面安全着陆.某实验小组在实验室中利用物块演示分析该模型的运动过程:如图所示,ABC为一段半径为R=5 m的光滑圆弧轨道,B为圆弧轨道的最低点.P为一倾角θ=37°的固定斜面,为减小在斜面上的滑动距离,在斜面顶端表面处铺了一层防滑薄木板DE,木板上边缘与斜面顶端D重合,圆形轨道末端C与斜面顶端D之间的水平距离为x=0.32 m.一物块以某一速度从A端进入,沿圆形轨道运动后从C端沿圆弧切线方向飞出,再经过时间t=0.2 s恰好以平行于薄木板的方向从D端滑上薄木板,物块始终未脱离薄木板,斜面足够长.已知物块质量m=3 kg,薄木板质量M=1 kg,木板与斜面之间的动摩擦因数μ1=eq \f(19,24),木板与物块之间的动摩擦因数μ2=eq \f(5,6),重力加速度g=10 m/s2,sin 37°=0.6,不计空气阻力,求:
(1)物块滑到圆轨道最低点B时,对轨道的压力(计算结果可以保留根号);
(2)物块相对于木板运动的距离;
(3)整个过程中,系统由于摩擦产生的热量.
11.(2023·河南省联考)全国平均每天有3亿多件快递包裹在分拣寄递中。一种交叉带式分拣机俯视图如图甲所示,有一组小车沿封闭水平导轨匀速率运动,小车上表面装有传送带,传送带运动方向与小车运动方向垂直。分拣时,经扫码后的某包裹与小车一起做匀速直线运动,根据目的地不同,到达某隔口时,小车上的传送带迅速启动,将包裹卸载下去,从而实现根据目的地将包裹进行分类的目的。现将小车上的传送带部分简化成图乙侧视图所示的模型,传送带与某包裹间的动摩擦因数μ=0.8,M、N间距离L=2.8 m,包裹可视为质点且放在MN中点。小车沿轨道匀速运动的速度v1=5 m/s,当该包裹即将到达目的地隔口时,小车上的传送带迅速启动,获得v2=4 m/s的速度,忽略传送带的加速时间,该包裹质量m=0.5 kg,取g=10 m/s2。
(1)求从传送带启动到该包裹到达N处所需时间;
(2)若要使该包裹卸载时恰好到达隔口中间,则需在包裹沿小车运动方向上距离隔口中间多远处启动传送带?
(3)求传送带与该包裹间因摩擦而产生的
12.如图所示,竖直放置的半径为R=0.2 m的螺旋圆形轨道BGEF与水平直轨道MB和BC平滑连接,倾角为θ=30°的斜面CD在C处与直轨道BC平滑连接.水平传送带MN以v0=4 m/s的速度沿顺时针方向运动,传送带与水平地面的高度差为h=0.8 m,MN间的距离为LMN=3.0 m,小滑块P与传送带和BC段轨道间的动摩擦因数μ=0.2,轨道其他部分均光滑.直轨道BC长LBC=1 m,小滑块P的质量为m=1 kg.重力加速度g取10 m/s2.
(1)若滑块P第一次到达与圆轨道圆心O等高的F点时,对轨道的压力刚好为零,求滑块P从斜面静止下滑处与BC轨道高度差H;
(2)若滑块P从斜面高度差H′=1.0 m处静止下滑,求滑块从N点平抛后到落地过程中的水平位移大小;
(3)滑块P在运动过程中能两次经过圆轨道最高点E点,求滑块P从斜面静止下滑的高度差H的范围.
备战2025届新高考物理一轮总复习练习第6章机械能第7讲专题提升动力学和能量观点的综合应用: 这是一份备战2025届新高考物理一轮总复习练习第6章机械能第7讲专题提升动力学和能量观点的综合应用,共6页。试卷主要包含了8 s,5 J等内容,欢迎下载使用。
备考2024届高考物理一轮复习强化训练第六章机械能专题十动力学和能量观点的综合应用: 这是一份备考2024届高考物理一轮复习强化训练第六章机械能专题十动力学和能量观点的综合应用,共5页。试卷主要包含了4s等内容,欢迎下载使用。
2024届高考物理新一轮复习专题强化试卷:第六章 专题强化练九 动力学和能量观点的综合应用: 这是一份2024届高考物理新一轮复习专题强化试卷:第六章 专题强化练九 动力学和能量观点的综合应用,共4页。试卷主要包含了5 J等内容,欢迎下载使用。