|试卷下载
终身会员
搜索
    上传资料 赚现金
    浙江省宁波市镇海中学2023-2024学年高一下学期期末考试数学卷试题(Word版附解析)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 解析
      浙江省宁波市镇海中学2023-2024学年高一下学期期末考试数学试题卷 Word版含解析.docx
    • 原卷
      浙江省宁波市镇海中学2023-2024学年高一下学期期末考试数学试题卷 Word版无答案.docx
    浙江省宁波市镇海中学2023-2024学年高一下学期期末考试数学卷试题(Word版附解析)01
    浙江省宁波市镇海中学2023-2024学年高一下学期期末考试数学卷试题(Word版附解析)02
    浙江省宁波市镇海中学2023-2024学年高一下学期期末考试数学卷试题(Word版附解析)03
    浙江省宁波市镇海中学2023-2024学年高一下学期期末考试数学卷试题(Word版附解析)01
    浙江省宁波市镇海中学2023-2024学年高一下学期期末考试数学卷试题(Word版附解析)02
    还剩21页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江省宁波市镇海中学2023-2024学年高一下学期期末考试数学卷试题(Word版附解析)

    展开
    这是一份浙江省宁波市镇海中学2023-2024学年高一下学期期末考试数学卷试题(Word版附解析),文件包含浙江省宁波市镇海中学2023-2024学年高一下学期期末考试数学试题卷Word版含解析docx、浙江省宁波市镇海中学2023-2024学年高一下学期期末考试数学试题卷Word版无答案docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。

    一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
    1. 点P是椭圆上一动点,则点P到两焦点的距离之和为( )
    A. 2B. C. D. 4
    2. 若是空间中的一组基底,则下列可与向量构成基底的向量是( )
    A. B. C. D.
    3. l为直线,为平面,则下列条件能作为的充要条件的是( )
    A. l平行平面内的无数条直线B. l平行于平面的法向量
    C. l垂直于平面法向量D. l与平面没有公共点
    4. 己知,则在上的投影向量的坐标为( )
    A. B. C. D.
    5. 点为直线上不同的两点,则直线与直线的位置关系是( )
    A. 相交B. 平行C. 重合D. 不确定
    6. 如图,平行六面体各棱长为1,且,动点P在该几何体内部,且满足,则的最小值为( )
    A. B. C. D.
    7. 实数满足,则的最小值为( )
    A. 3B. 7C. D.
    8. 在棱长为2的正四面体中,棱上分别存在点(包含端点),直线与平面,平面所成角为和,则的取值范围是( )
    A. B. C. D.
    二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分.
    9. 已知椭圆的焦点分别为,焦距为为椭圆C上一点,则下列选项中正确的是( )
    A. 椭圆C的离心率为B. 的周长为3
    C. 不可能是直角D. 当时,的面积为
    10. 已知圆,圆.则下列选项正确是( )
    A. 直线恒过定点
    B. 当圆和圆外切时,若分别是圆上的动点,则
    C. 若圆和圆共有2条公切线,则
    D. 当时,圆与圆相交弦的弦长为
    11. 埃舍尔是荷兰著名的版画家,《哈利波特》《盗梦空间》《迷宫》等影片的灵感都来源于埃舍尔的作品.通过著名的《瀑布》(图1)作品,可以感受到形状渐变、几何体组合和光学幻觉方面的魅力.画面中的两座高塔上方各有一个几何体,右塔上的几何体首次出现,后称“埃舍尔多面体”(图2),其可以用两两垂直且中心重合的三个正方形构造.如图4,分别为埃舍尔多面体的顶点,分别为正方形边上的中点,埃舍尔多面体的可视部分是由12个四棱锥构成.为了便于理解,图5中构造了其中两个四棱锥与分别为线段的中点.左塔上方是著名的“三立方体合体”(图3),取棱长为2的正方体的中心O,以O为原点,轴均平行于正方体棱,建立如图6所示的空间直角坐标系,将正方体分别绕轴旋转,将旋转后的三个正方体(图7,8,9)结合在一起便可得到“三立方体合体”(图10),下列有关“埃舍尔多面体”和“三立方体合体”的说法中,正确的是( )
    A. 在图5中,
    B. 在图5中,直线与平面所成角的正弦值为
    C. 在图10中,设点的坐标为,则
    D. 在图10中,若E为线段上的动点(包含端点),则异面直线与所成角余弦值的最大值为
    三、填空题:本题共3小题,每小题5分,共15分.
    12. 在空间直角坐标系中,点为平面外一点,点为平面内一点.若平面一个法向量为,则点到平面的距离是_______.
    13. 已知点P是直线上的一个动点,过点P作圆的两条切线,与圆切于点,则的最小值是_______.
    14. 已知椭圆的左,右焦点分别是,下顶点为点,直线交椭圆C于点N,设的内切圆与相切于点E,若,则椭圆C的离心率为_______,的内切圆半径长为_______.
    四、解答题:本题共5小题,共77分.解答应写出文字说明、正明过程或演算步骤.
    15. 已知直线l经过点,且点到直线l的距离为1.
    (1)求直线l的方程;
    (2)O为坐标原点,点C坐标为,若点P为直线上的动点,求的最小值,并求出此时点P的坐标.
    16. 如图,正三棱柱所有棱长均为2,点在棱上,且满足,点是棱的中点.
    (1)证明:平面;
    (2)求直线与平面所成角的正弦值.
    17. 已知圆的圆心在轴上,且过.
    (1)求圆的方程;
    (2)过点的直线与圆交于两点(点位于轴上方),在轴上是否存在点,使得当直线变化时,均有?若存在,求出点的坐标;若不存在,请说明理由.
    18. 如图,三棱柱中,为等边三角形,,平面平面.
    (1)求证:;
    (2)若,点E是线段的中点,
    (i)求平面与平面夹角的余弦值;
    (ii)在平面中是否存在点P,使得且.若存在,请求出点P的位置;若不存在,请说明理由.
    19. 在空间直角坐标系中,己知向量,点.若直线以为方向向量且经过点,则直线的标准式方程可表示为;若平面以为法向量且经过点,则平面的点法式方程可表示为,一般式方程可表示为.
    (1)若平面,平面,直线为平面和平面的交线,求直线的单位方向向量(写出一个即可);
    (2)若三棱柱的三个侧面所在平面分别记为,其中平面经过点,,平面,平面,求实数m的值;
    (3)若集合,记集合中所有点构成的几何体为,求几何体的体积和相邻两个面(有公共棱)所成二面角的大小.
    相关试卷

    浙江省宁波市镇海中学2023-2024学年高一下学期期末考试数学试题卷(无答案): 这是一份浙江省宁波市镇海中学2023-2024学年高一下学期期末考试数学试题卷(无答案),共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    浙江省宁波市镇海中学2023-2024学年高一下学期期中考试数学试卷(Word版附解析): 这是一份浙江省宁波市镇海中学2023-2024学年高一下学期期中考试数学试卷(Word版附解析),共24页。试卷主要包含了 已知事件A,B满足,,则等内容,欢迎下载使用。

    浙江省宁波市镇海中学2023-2024学年高一下学期期中数学试卷(Word版附答案): 这是一份浙江省宁波市镇海中学2023-2024学年高一下学期期中数学试卷(Word版附答案),文件包含浙江省宁波市镇海中学2023-2024学年高一下学期期中考试数学试卷Word版无答案docx、浙江省宁波市镇海中学2023-2024学年高一下学期期中考试数学试卷答案pdf等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map